浮点数在内存中的存储

简介: 浮点数在内存中的存储

常见的浮点数:3.14159、1E10等,浮点数家族包括: float、double、long double 类型。浮点数表示的范围: float.h 中定义

根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:

V  =  (−1) ^S*M ∗ 2^ E

•  M表示符号位,当S=0,V为正数;当S=1,V为负数(−1)

•  S表是有效数字,M是大于等于1,小于2的

•  E表示指数位

举例来说:

十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。

那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。

十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。

IEEE 754规定:

对于32位的浮点数,最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M

对于64位的浮点数,最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M

 浮点数存的过程

IEEE 754 对有效数字M和指数E,还有一些特别规定。

       前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。

IEEE 754 规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。

       这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂:

       首先,E为一个无符号整数(unsigned int)

       这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023

       比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

浮点数取的过程

指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

       这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

       比如:0.5 的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其中间码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:

0 01111110 00000000000000000000000

E全为0

       这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

0 00000000 00100000000000000000000

E全为1

       这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

0 11111111 00010000000000000000000

#include <stdio.h>
int main()
{
  int n = 9;
  float* pFloat = (float*)&n;
  printf("n的值为:%d\n", n);
  printf("*pFloat的值为:%f\n", *pFloat);
  *pFloat = 9.0;
  printf("num的值为:%d\n", n);
  printf("*pFloat的值为:%f\n", *pFloat);
  return 0;
}

分析:

先看第1环节,为什么 9 还原成浮点数,就成了 0.000000

9以整型的形式存储在内存中,得到如下二进制序列:

0000 0000 0000 0000 0000 0000 0000 1001

首先,将 9 的二进制序列按照浮点数的形式拆分,得到第一位符号位s=0,后面8位的指数

E=00000000 ,

最后23位的有效数字M=00000000000000000001001。

由于指数E全为0,所以符合E为全0的情况。因此,浮点数V就写成:

  V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

再看第2环节,浮点数9.0,为什么整数打印是 1091567616

首先,浮点数9.0等于二进制的1001.0,即换算成科学计数法是:1.001×2^3

所以: 9.0 =  (−1) ^0∗(1.001) ∗  2 ^3

那么,第一位的符号位S=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010

所以,写成二进制形式,应该是S+E+M,即

0 10000010 001 0000 0000 0000 0000 0000

这个32位的二进制数,被当做整数来解析的时候,就是整数在内存中的补码,原码正是

1091567616 。


目录
相关文章
|
1月前
|
存储 C++
看完就等于拿捏浮点数在内存中的储存了
看完就等于拿捏浮点数在内存中的储存了
47 2
看完就等于拿捏浮点数在内存中的储存了
|
26天前
|
存储 C语言
数据在内存中的存储方式
本文介绍了计算机中整数和浮点数的存储方式,包括整数的原码、反码、补码,以及浮点数的IEEE754标准存储格式。同时,探讨了大小端字节序的概念及其判断方法,通过实例代码展示了这些概念的实际应用。
55 1
|
30天前
|
存储
共用体在内存中如何存储数据
共用体(Union)在内存中为所有成员分配同一段内存空间,大小等于最大成员所需的空间。这意味着所有成员共享同一块内存,但同一时间只能存储其中一个成员的数据,无法同时保存多个成员的值。
|
1月前
|
存储 弹性计算 算法
前端大模型应用笔记(四):如何在资源受限例如1核和1G内存的端侧或ECS上运行一个合适的向量存储库及如何优化
本文探讨了在资源受限的嵌入式设备(如1核处理器和1GB内存)上实现高效向量存储和检索的方法,旨在支持端侧大模型应用。文章分析了Annoy、HNSWLib、NMSLib、FLANN、VP-Trees和Lshbox等向量存储库的特点与适用场景,推荐Annoy作为多数情况下的首选方案,并提出了数据预处理、索引优化、查询优化等策略以提升性能。通过这些方法,即使在资源受限的环境中也能实现高效的向量检索。
|
1月前
|
存储 编译器
数据在内存中的存储
数据在内存中的存储
42 4
|
1月前
|
存储 Java
JVM知识体系学习四:排序规范(happens-before原则)、对象创建过程、对象的内存中存储布局、对象的大小、对象头内容、对象如何定位、对象如何分配
这篇文章详细地介绍了Java对象的创建过程、内存布局、对象头的MarkWord、对象的定位方式以及对象的分配策略,并深入探讨了happens-before原则以确保多线程环境下的正确同步。
53 0
JVM知识体系学习四:排序规范(happens-before原则)、对象创建过程、对象的内存中存储布局、对象的大小、对象头内容、对象如何定位、对象如何分配
|
1月前
|
存储 机器学习/深度学习 人工智能
数据在内存中的存储
数据在内存中的存储
|
1月前
|
存储 C语言
深入C语言内存:数据在内存中的存储
深入C语言内存:数据在内存中的存储
|
1月前
|
存储
整型在内存中的存储
本文详细解释了计算机中整型数据的三种二进制表示方法:原码、反码和补码,并展示了如何将正数和负数的原码转换为反码和补码。
38 0
|
3月前
|
存储 监控 Docker
如何限制docker使用的cpu,内存,存储
如何限制docker使用的cpu,内存,存储