浮点数在内存中的存储

简介: 浮点数在内存中的存储

常见的浮点数:3.14159、1E10等,浮点数家族包括: float、double、long double 类型。浮点数表示的范围: float.h 中定义

根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:

V  =  (−1) ^S*M ∗ 2^ E

•  M表示符号位,当S=0,V为正数;当S=1,V为负数(−1)

•  S表是有效数字,M是大于等于1,小于2的

•  E表示指数位

举例来说:

十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。

那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。

十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。

IEEE 754规定:

对于32位的浮点数,最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M

对于64位的浮点数,最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M

 浮点数存的过程

IEEE 754 对有效数字M和指数E,还有一些特别规定。

       前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。

IEEE 754 规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。

       这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂:

       首先,E为一个无符号整数(unsigned int)

       这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023

       比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

浮点数取的过程

指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

       这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

       比如:0.5 的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其中间码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:

0 01111110 00000000000000000000000

E全为0

       这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

0 00000000 00100000000000000000000

E全为1

       这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

0 11111111 00010000000000000000000

#include <stdio.h>
int main()
{
  int n = 9;
  float* pFloat = (float*)&n;
  printf("n的值为:%d\n", n);
  printf("*pFloat的值为:%f\n", *pFloat);
  *pFloat = 9.0;
  printf("num的值为:%d\n", n);
  printf("*pFloat的值为:%f\n", *pFloat);
  return 0;
}

分析:

先看第1环节,为什么 9 还原成浮点数,就成了 0.000000

9以整型的形式存储在内存中,得到如下二进制序列:

0000 0000 0000 0000 0000 0000 0000 1001

首先,将 9 的二进制序列按照浮点数的形式拆分,得到第一位符号位s=0,后面8位的指数

E=00000000 ,

最后23位的有效数字M=00000000000000000001001。

由于指数E全为0,所以符合E为全0的情况。因此,浮点数V就写成:

  V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

再看第2环节,浮点数9.0,为什么整数打印是 1091567616

首先,浮点数9.0等于二进制的1001.0,即换算成科学计数法是:1.001×2^3

所以: 9.0 =  (−1) ^0∗(1.001) ∗  2 ^3

那么,第一位的符号位S=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010

所以,写成二进制形式,应该是S+E+M,即

0 10000010 001 0000 0000 0000 0000 0000

这个32位的二进制数,被当做整数来解析的时候,就是整数在内存中的补码,原码正是

1091567616 。


目录
相关文章
|
1天前
|
存储 Java C++
Java虚拟机(JVM)管理内存划分为多个区域:程序计数器记录线程执行位置;虚拟机栈存储线程私有数据
Java虚拟机(JVM)管理内存划分为多个区域:程序计数器记录线程执行位置;虚拟机栈存储线程私有数据,如局部变量和操作数;本地方法栈支持native方法;堆存放所有线程的对象实例,由垃圾回收管理;方法区(在Java 8后变为元空间)存储类信息和常量;运行时常量池是方法区一部分,保存符号引用和常量;直接内存非JVM规范定义,手动管理,通过Buffer类使用。Java 8后,永久代被元空间取代,G1成为默认GC。
9 2
|
4天前
|
存储
数据在内存中的存储(2)
数据在内存中的存储(2)
21 5
|
4天前
|
存储 小程序 编译器
数据在内存中的存储(1)
数据在内存中的存储(1)
23 5
|
5天前
|
存储 安全 Java
SpringSecurity6从入门到实战之初始用户如何存储到内存
Spring Security 在 SpringBoot 应用中默认使用 `UserDetailsServiceAutoConfiguration` 类将用户信息存储到内存中。当classpath有`AuthenticationManager`、存在`ObjectPostProcessor`实例且无特定安全bean时,此配置生效。`inMemoryUserDetailsManager()`方法创建内存用户,通过`UserDetails`对象填充`InMemoryUserDetailsManager`的内部map。若要持久化到数据库,需自定义`UserDetailsService`接口实
|
4天前
|
存储 编译器 C语言
数据在内存中的存储
数据在内存中的存储
13 2
|
3天前
|
存储
数据在内存中的存储(了解数据在内存中的存储规则,看这一篇就够了!)
数据在内存中的存储(了解数据在内存中的存储规则,看这一篇就够了!)
|
3天前
|
存储 C语言
C语言----数据在内存中的存储(2)
C语言----数据在内存中的存储
|
3天前
|
存储 C语言
C语言----数据在内存中的存储(1)
C语言----数据在内存中的存储
|
3天前
|
存储 C语言
C语言---求一个整数存储在内存中的二进制中1的个数--3种方法
C语言---求一个整数存储在内存中的二进制中1的个数--3种方法
|
5天前
|
存储 安全 Unix
【内网安全】Win&Linux&内存离线读取&Hashcat破解&RDP&SSH存储提取
【内网安全】Win&Linux&内存离线读取&Hashcat破解&RDP&SSH存储提取