Java多线程实战-CompletableFuture异步编程优化查询接口响应速度

简介: Java多线程实战-CompletableFuture异步编程优化查询接口响应速度

前言

在Web应用开发中,一个界面可能需要同时请求多个接口来获取不同信息。传统的做法是编写一个聚合接口同步获取这些数据,第二种方法是分多次请求来获取数据。这两种方式虽然简单直观,但效率比较低下,随着应用复杂度的增加,这种低效的做法将会带来严重的性能问题。


异步编程模型可以很好地解决这个问题。多个任务可以同时执行,互不影响,从而大幅提高应用的响应速度和吞吐量。Java 8 中引入的CompletableFuture为异步编程提供了强有力的支持,使得编写异步代码变得更加简单。本文将重点介绍如何利用CompletableFuture优化并发查询接口的响应速度。

实现思路


要优化并发查询接口的响应速度,传统的优化方式是通过多线程来并行执行多个查询任务。但这种做法存在一些缺陷:


创建和管理线程的开销较大,如果线程数量过多,会给系统带来很大的压力。

如果查询任务的执行时间不均匀,会导致部分线程需要长时间等待,资源利用率低下。

而CompletableFuture提供了一种更优雅、更高效的解决方案。其核心思路是:


每个查询任务都封装为一个CompletableFuture异步任务,由线程池并行执行。

通过CompletableFuture.allOf()方法等待所有异步任务完成。

最后从每个任务的结果中组装出最终需要的数据对象。

CompletableFuture快速入门

在JDK8以后,CompletableFuture提供了丰富的API用于异步编程,下面列举了一些最常见的用法:

1.创建CompletableFuture

有多种方式可以创建CompletableFuture:

// 从一个供给函数创建
CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> "Hello");
 
// 从一个运行函数创建 
CompletableFuture<Void> future = CompletableFuture.runAsync(() -> System.out.println("Hello"));
 
// 从一个已有的结果创建
CompletableFuture<String> future = CompletableFuture.completedFuture("Hello");


2.链式调用

CompletableFuture支持链式调用,可以方便地对异步结果进行转换和组合:

CompletableFuture<String> resultFuture = CompletableFuture.supplyAsync(() -> "Hello")
    .thenApply(s -> s + " World") // 对结果进行转换
    .thenCompose(s -> getResult(s)); // 组合另一个异步操作


3.异常处理

通过exceptionally()方法可以对异常情况进行处理:

String result = CompletableFuture.supplyAsync(() -> {
    throw new RuntimeException("error"); 
}).exceptionally(ex -> {
    // 处理异常
    return "Default Value";
}).get();


4.组合多个CompletableFuture

通过allOf,anyOf这两种方式我们可以让任务之间协同工作,join()和get()方法都是阻塞调用它们的线程(通常为主线程)来获取CompletableFuture异步之后的返回值。


get() 方法会抛出经检查的异常,可被捕获,自定义处理或者直接抛出。


而 join() 会抛出未经检查的异常。

// 等待所有任务完成
CompletableFuture.allOf(future1, future2, future3).get();
CompletableFuture.allOf(future1, future2, future3).join();
 
// 只要任意一个任务完成即可  
CompletableFuture.anyOf(future1, future2, future3).get();
CompletableFuture.anyOf(future1, future2, future3).join();
 
// 规定超时时间,防止一直堵塞
CompletableFuture.allOf(future1, future2, future3).get(6, TimeUnit.SECONDS);

5.设置超时时间

我们可以通过下面的方式可以设置某个CompletableFuture的超时时间:

String result = CompletableFuture.supplyAsync(() -> "Hello")
                 .completeOnTimeout("Timeout!", 1, TimeUnit.SECONDS)
                 .get();

代码实现

1.初始化线程池

application.yaml配置文件

# 线程池配置
thread:
  pool:
    corePoolSize: 10
    maxPoolSize: 20
    queueCapacity: 100
    keepAliveSeconds: 60


线程池配置类ThreadPoolConfig

/**
 * @author Luckysj @刘仕杰
 * @description 线程池配置
 * @create 2024/03/19 21:43:57
 */
@Configuration
public class ThreadPoolConfig {
 
    @Value("${thread.pool.corePoolSize}")
    private int corePoolSize;
 
    @Value("${thread.pool.maxPoolSize}")
    private int maxPoolSize;
 
    @Value("${thread.pool.queueCapacity}")
    private int queueCapacity;
 
    @Value("${thread.pool.keepAliveSeconds}")
    private int keepAliveSeconds;
 
    @Bean
    public ThreadPoolExecutor threadPoolExecutor() {
        return new ThreadPoolExecutor(
                corePoolSize,
                maxPoolSize,
                keepAliveSeconds,
                TimeUnit.SECONDS,
                new LinkedBlockingQueue<>(queueCapacity),
                new ThreadPoolExecutor.CallerRunsPolicy());
    }
}


2.封装响应信息聚合对象

我们这里模拟用户相关的界面,这里需要点赞数,粉丝数,文章数等信息

/**
 * @author Luckysj @刘仕杰
 * @description 信息聚合对象
 * @create 2024/03/19 21:48:13
 */
@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
public class UserBehaviorDataDTO {
 
    //用户ID
    private Long userId ;
 
    //发布文章数
    private Long articleCount ;
 
    //点赞数
    private Long likeCount ;
 
    //粉丝数
    private Long fansCount ;
 
    //消息数
    private Long msgCount ;
 
    //收藏数
    private Long collectCount ;
 
    //关注数
    private Long followCount ;
 
    //红包数
    private Long redBagCount ;
 
    // 卡券数
    private Long couponCount ;
 
}


3.通过CompletableFuture异步执行每一个查询操作

如下,我们定义了一个异步任务类,创建每一个查询操作的CompletableFuture异步任务放入线程中执行,并利用allOf等待全部任务执行完成,执行完成后组装查询信息到聚合对象中返回

/**
 * @author Luckysj @刘仕杰
 * @description 一个页面可能有多达10个左右的一个用户行为数据,我们可以通过多线程来提高查询速率
 * @create 2024/03/19 21:45:04
 */
@Slf4j
@Component
public class MyFutureTask {
    @Resource
    UserService userService;
 
    // 线程池
    @Resource
    private ExecutorService executor;
    public UserBehaviorDataDTO getUserAggregatedResult(final Long userId) {
        System.out.println("MyFutureTask的线程:" + Thread.currentThread());
        try {
            // 1.发布文章数
            CompletableFuture<Long> articleCountFT = CompletableFuture.supplyAsync(() -> userService.countArticleCountByUserId(userId), executor);
            // 2.点赞数
            CompletableFuture<Long> LikeCountFT = CompletableFuture.supplyAsync(() -> userService.countLikeCountByUserId(userId), executor);
            // 3.粉丝数
            CompletableFuture<Long> fansCountFT = CompletableFuture.supplyAsync(() -> userService.countFansCountByUserId(userId), executor);
            // 4.消息数
            CompletableFuture<Long> msgCountFT = CompletableFuture.supplyAsync(() -> userService.countMsgCountByUserId(userId), executor);
            // 5.收藏数
            CompletableFuture<Long> collectCountFT = CompletableFuture.supplyAsync(() -> userService.countCollectCountByUserId(userId), executor);
            // 6.关注数
            CompletableFuture<Long> followCountFT = CompletableFuture.supplyAsync(() -> userService.countFollowCountByUserId(userId), executor);
            // 7.红包数
            CompletableFuture<Long> redBagCountFT = CompletableFuture.supplyAsync(() -> userService.countRedBagCountByUserId(userId), executor);
            // 8.卡券数
            CompletableFuture<Long> couponCountFT = CompletableFuture.supplyAsync(() -> userService.countCouponCountByUserId(userId), executor);
 
            // 等待全部线程执行完毕 这里一定要设超时时间,不然会一直等待
            CompletableFuture.allOf(articleCountFT, LikeCountFT, fansCountFT, msgCountFT, collectCountFT, followCountFT, redBagCountFT, couponCountFT).get(6, TimeUnit.SECONDS);
 
            // 必须设置合理的超时时间
            UserBehaviorDataDTO userBehaviorData = UserBehaviorDataDTO.builder().articleCount(articleCountFT.get()).likeCount(LikeCountFT.get()).fansCount(fansCountFT.get()).msgCount(msgCountFT.get()).collectCount(collectCountFT.get()).followCount(followCountFT.get()).redBagCount(redBagCountFT.get()).couponCount(couponCountFT.get()).build();
            return userBehaviorData;
        } catch (Exception e) {
            log.error("get user behavior data error", e);
            return new UserBehaviorDataDTO();
        }
    }
 

这里用户服务类中我采用线程睡眠来模拟查询耗时

4.测试

访问测试接口,日志输出如下:

UserController的线程:Thread[http-nio-8080-exec-2,5,main]
MyFutureTask的线程:Thread[http-nio-8080-exec-2,5,main]
UserService获取ArticleCount的线程  pool-2-thread-1
UserService获取likeCount的线程  pool-2-thread-2
UserService获取MsgCount的线程  pool-2-thread-4
UserService获取CollectCount的线程  pool-2-thread-5
UserService获取FollowCount的线程  pool-2-thread-6
UserService获取RedBagCount的线程  pool-2-thread-7
UserService获取CouponCount的线程  pool-2-thread-8
获取CouponCount===睡眠:0s
获取RedBagCount===睡眠:1s
获取FollowCount===睡眠:1s
获取CollectCount==睡眠:2s
获取FansCount===睡眠:1s
UserService获取FansCount的线程  pool-2-thread-3
获取ArticleCount===睡眠:1s
获取MsgCount===睡眠:1s
获取likeCount===睡眠:2s
===============总耗时:2.019秒


可以看到,总耗时主要取决于耗时最长的那个操作,相比于串行查询肯定快多了

其他优化点

除了使用CompletableFuture并行查询优化外,还有以下可以提高接口查询速率的方法:


数据缓存: 对于一些常用且不经常变动的数据,可以考虑加入redis缓存或者本地缓存,减少数据库查询。

异步持久化: 对于一些不需要立即写入数据库的数据,可以先放入消息队列,由后台程序异步处理,减轻数据库压力。

分库分表: 对于数据量较大的表,可以考虑分库分表,避免单表数据量过大带来的查询效率问题。

总结


CompletableFuture为Java提供了强大的异步编程能力,可以极大地提高应用的并发能力和响应速度。通过并行执行多个查询任务,我们可以大幅减少接口的响应时间,优化用户体验。同时,CompletableFuture的代码风格函数式、简洁、优雅,也使得代码更加易读易维护。


但是,异步编程也不是万能的,它需要开发者转变思维模式,还需要权衡利弊。在实际项目中,我们可以结合其他优化手段,选择合适的方案,以达到最佳的性能效果。

相关文章
|
28天前
|
自然语言处理 Java 关系型数据库
Java|小数据量场景的模糊搜索体验优化
在小数据量场景下,如何优化模糊搜索体验?本文分享一个简单实用的方案,虽然有点“土”,但效果还不错。
31 0
|
1天前
|
安全 Java API
【Java性能优化】Map.merge()方法:告别繁琐判空,3行代码搞定统计累加!
在日常开发中,我们经常需要对Map中的值进行累加统计。}else{代码冗长,重复调用get()方法需要显式处理null值非原子操作,多线程下不安全今天要介绍的方法,可以让你用一行代码优雅解决所有这些问题!方法的基本用法和优势与传统写法的对比分析多线程安全版本的实现Stream API的终极优化方案底层实现原理和性能优化建议一句话总结是Java 8为我们提供的Map操作利器,能让你的统计代码更简洁、更安全、更高效!// 合并两个列表});简单累加。
17 0
|
1月前
|
数据采集 存储 网络协议
Java HttpClient 多线程爬虫优化方案
Java HttpClient 多线程爬虫优化方案
|
3月前
|
人工智能 算法 Java
Java高级应用开发:AI赋能下的智能代码生成与优化
本文探讨了AI技术,特别是像DeepSeek这样的智能工具,在Java高级应用开发中的应用。AI在代码生成、优化、自动化测试等方面发挥重要作用,可自动生成高质量代码片段、提出优化建议并检测潜在错误,显著提升开发效率与代码质量。未来,AI将进一步推动Java开发的智能化和自动化,为开发者带来全新的开发体验。
|
缓存 Oracle IDE
深入分析Java反射(八)-优化反射调用性能
Java反射的API在JavaSE1.7的时候已经基本完善,但是本文编写的时候使用的是Oracle JDK11,因为JDK11对于sun包下的源码也上传了,可以直接通过IDE查看对应的源码和进行Debug。
472 0
|
3月前
|
存储 监控 Java
【Java并发】【线程池】带你从0-1入门线程池
欢迎来到我的技术博客!我是一名热爱编程的开发者,梦想是编写高端CRUD应用。2025年我正在沉淀中,博客更新速度加快,期待与你一起成长。 线程池是一种复用线程资源的机制,通过预先创建一定数量的线程并管理其生命周期,避免频繁创建/销毁线程带来的性能开销。它解决了线程创建成本高、资源耗尽风险、响应速度慢和任务执行缺乏管理等问题。
242 60
【Java并发】【线程池】带你从0-1入门线程池
|
1月前
|
Java 中间件 调度
【源码】【Java并发】从InheritableThreadLocal和TTL源码的角度来看父子线程传递
本文涉及InheritableThreadLocal和TTL,从源码的角度,分别分析它们是怎么实现父子线程传递的。建议先了解ThreadLocal。
74 4
【源码】【Java并发】从InheritableThreadLocal和TTL源码的角度来看父子线程传递
|
15天前
|
Java
java 多线程异常处理
本文介绍了Java中ThreadGroup的异常处理机制,重点讲解UncaughtExceptionHandler的使用。通过示例代码展示了当线程的run()方法抛出未捕获异常时,JVM如何依次查找并调用线程的异常处理器、线程组的uncaughtException方法或默认异常处理器。文章还提供了具体代码和输出结果,帮助理解不同处理器的优先级与执行逻辑。
|
1天前
|
机器学习/深度学习 消息中间件 存储
【高薪程序员必看】万字长文拆解Java并发编程!(9-2):并发工具-线程池
🌟 ​大家好,我是摘星!​ 🌟今天为大家带来的是并发编程中的强力并发工具-线程池,废话不多说让我们直接开始。
13 0
|
2月前
|
存储 网络协议 安全
Java网络编程,多线程,IO流综合小项目一一ChatBoxes
**项目介绍**:本项目实现了一个基于TCP协议的C/S架构控制台聊天室,支持局域网内多客户端同时聊天。用户需注册并登录,用户名唯一,密码格式为字母开头加纯数字。登录后可实时聊天,服务端负责验证用户信息并转发消息。 **项目亮点**: - **C/S架构**:客户端与服务端通过TCP连接通信。 - **多线程**:采用多线程处理多个客户端的并发请求,确保实时交互。 - **IO流**:使用BufferedReader和BufferedWriter进行数据传输,确保高效稳定的通信。 - **线程安全**:通过同步代码块和锁机制保证共享数据的安全性。
119 23