【AI Agent系列】【阿里AgentScope框架】5. Pipeline模块的组合使用及Pipeline模块总结

简介: 【AI Agent系列】【阿里AgentScope框架】5. Pipeline模块的组合使用及Pipeline模块总结

大家好,我是 同学小张,持续学习C++进阶知识和AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,共同学习和进步。


前面咱们已经深入学习了AgentScope框架中Pipeline模块的使用和实现原理,本文来总结一下这些Pipeline,以及探索一下各种Pipeline的组合用法。

0. 前置推荐阅读

本文参考:https://modelscope.github.io/agentscope/zh_CN/tutorial/202-pipeline.html

1. Pipeline的使用方式总结

1.1 两种Pipeline分装

从前面的文章可以看出,AgentScope提供了两种Pipeline的使用方式,分别为类类型的Pipeline和函数式的Pipeline

以顺序式Pipeline为例,你既可以使用 SequentialPipeline 这种类类型的Pipeline

# 实例化并调用
pipeline = SequentialPipeline([agent1, agent2, agent3])
x = pipeline(x)

又可以使用 sequentialpipeline 这种函数式的Pipeline

# 直接调用
x = sequentialpipeline([agent1, agent2, agent3], x)

1.2 内置Pipeline类型一览

类类型Pipeline 函数式Pipeline 描述
SequentialPipeline sequentialpipeline 按顺序执行一系列运算符,将一个运算符的输出作为下一个运算符的输入。
IfElsePipeline ifelsepipeline 实现条件逻辑,如果条件为真,则执行一个运算符;如果条件为假,则执行另一个运算符。
SwitchPipeline switchpipeline 实现分支选择,根据条件的结果从映射集中执行一个运算符。
ForLoopPipeline forlooppipeline 重复执行一个运算符,要么达到设定的迭代次数,要么直到满足指定的中止条件。
WhileLoopPipeline whilelooppipeline 只要给定条件保持为真,就持续执行一个运算符。
- placeholder 在流控制中不需要任何操作的分支,如 if-else/switch 中充当占位符。

1.3 Pipeline模块存在的意义

提供了一种多智能体间交互流程的控制逻辑封装,简化了代码。

下面是官方文档中展示的使用Pipeline和不使用Pipeline的代码对比:

可以看到,它简化了代码,其实也就是将原本需要用户写的控制语句,封装到了Pipeline中,省掉的这部分代码,与Pipeline中的实现源码基本一致。

以上示例省掉的那简单的几行控制逻辑可能看不出多大的作用,但是当逻辑复杂之后,这个Pipeline的作用就会显现出来。

2. Pipeline的组合使用示例

from agentscope.pipelines import SequentialPipeline, IfElsePipeline
# 创建一个按顺序执行智能体的 Pipeline
pipe1 = SequentialPipeline([agent1, agent2, agent3])
# 创建一个条件执行智能体的 Pipeline
pipe2 = IfElsePipeline(condition, agent4, agent5)
# 创建一个按顺序执行 pipe1 和 pipe2 的 Pipeline
pipe3 = SequentialPipeline([pipe1, pipe2])
# 调用 Pipeline
x = pipe3(x)

以上示例代码中,首先创建了一个顺序执行的Pipeline,然后创建了一个条件Pipeline,最后通过顺序Pipeline来执行前面的两个Pipeline。这样就实现了agentPipeline以及各类Pipeline的组合使用。

所以,你也看到了,Pipeline不光能传递进去一堆 agent,还能传递进去一堆 pipeline。为什么?因为Pipeline接收的实际是一堆Operator类型,只要继承了这个类型,都可以使用Pipeline

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,持续学习C++进阶知识AI大模型应用实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关文章
|
25天前
|
传感器 机器学习/深度学习 人工智能
AI Agent 十问十答,降低认知摩擦
本文探讨了AI Agent的相关概念和技术细节,包括其定义、与传统软件的区别、构成组件、工作原理及优化方法。AI Agent是一种基于大语言模型(LLM)的智能代理,能感知环境、推理决策并执行任务。相比传统自动化软件,AI Agent具备更强的理解力和自主性,可处理复杂任务。文章分析了Chatbot向AI Agent演进的趋势及其驱动因素,并详解了提升AI Agent效果的关键要素如模型质量、工具选择和指令设计。此外,还讨论了Workflow与LLM的结合方式以及单智能体与多智能体系统的优劣,为理解和应用AI Agent提供了全面视角。
1099 168
|
1月前
|
人工智能 开发框架 决策智能
谷歌开源多智能体开发框架 Agent Development Kit:百行代码构建复杂AI代理,覆盖整个开发周期!
谷歌开源的Agent Development Kit(ADK)是首个代码优先的Python工具包,通过多智能体架构和灵活编排系统,支持开发者在百行代码内构建复杂AI代理,提供预置工具库与动态工作流定义能力。
221 3
谷歌开源多智能体开发框架 Agent Development Kit:百行代码构建复杂AI代理,覆盖整个开发周期!
|
1月前
|
人工智能 JavaScript 前端开发
领导给我3天时间汇总所有AI模块词条,结合DeepSeek,20分钟就搞定了。
本文分享了一次利用AI工具提升工作效率的实际案例。作者接到任务,需在3天内梳理公司AI模块的所有词条并以增量形式提供给项目组。为高效完成任务,作者借助DeepSeek编写了三个Node.js脚本:第一个脚本扫描所有/ai目录下的文件,提取符合“zxy.xxx”格式的词条;第二个脚本对比目标词条库与已提取的词条,生成过滤后的副本;第三个脚本将最终结果输出为Excel文档,满足领导需求。整个过程从十几分钟到二十分钟不等,大幅缩短了原本需要数天的工作量。此案例表明,在重复性工作中合理运用AI工具可显著提高效率。
189 12
|
15天前
|
人工智能 监控 JavaScript
MCP实战之Agent自主决策-让 AI玩转贪吃蛇
MCP服务器通过提供资源、工具、提示模板三大能力,推动AI实现多轮交互与实体操作。当前生态包含Manus、OpenManus等项目,阿里等企业积极合作,Cursor等工具已集成MCP市场。本文以贪吃蛇游戏为例,演示MCP Server实现流程:客户端连接服务端获取能力集,AI调用工具(如start_game、get_state)控制游戏,通过多轮交互实现动态操作,展示MCP在本地实践中的核心机制与挑战。
332 39
MCP实战之Agent自主决策-让 AI玩转贪吃蛇
|
2月前
|
人工智能 网络协议 Java
RuoYi AI:1人搞定AI中台!开源全栈式AI开发平台,快速集成大模型+RAG+支付等模块
RuoYi AI 是一个全栈式 AI 开发平台,支持本地 RAG 方案,集成多种大语言模型和多媒体功能,适合企业和个人开发者快速搭建个性化 AI 应用。
1134 77
RuoYi AI:1人搞定AI中台!开源全栈式AI开发平台,快速集成大模型+RAG+支付等模块
|
27天前
|
人工智能 自然语言处理 监控
Cooragent:清华 LeapLab 开源 AI Agent 协作框架,一句话召唤AI军团!
Cooragent 是清华大学 LeapLab 团队推出的开源 AI Agent 协作框架,支持基于简单描述快速创建 Agent 并实现多 Agent 协作,具备 Prompt-Free 设计和本地部署能力。
217 6
Cooragent:清华 LeapLab 开源 AI Agent 协作框架,一句话召唤AI军团!
|
16天前
|
存储 人工智能 NoSQL
表格存储:为 AI 注入“记忆”,构建大规模、高性能、低成本的 Agent Memory 数据底座
本文探讨了AI Agent市场爆发增长背景下的存储需求,重点介绍了Tablestore在Agent Memory存储中的优势。2025年被视为AI Agent市场元年,关键事件推动技术发展。AI Agent的存储分为Memory(短期记忆)和Knowledge(长期知识)。Tablestore通过高性能、低成本持久化存储、灵活的Schemaless设计等特性满足Memory场景需求;在Knowledge场景中,其多元索引支持全文、向量检索等功能,优化成本与稳定性。实际案例包括通义App、某浏览器及阿里云多项服务,展示Tablestore的卓越表现。最后邀请加入钉钉群共同探讨AI技术。
675 13
|
1月前
|
人工智能 自然语言处理 JavaScript
测试工程师要失业?Magnitude:开源AI Agent驱动的端到端测试框架,让Web测试更智能,自动完善测试用例!
Magnitude是一个基于视觉AI代理的开源端到端测试框架,通过自然语言构建测试用例,结合推理代理和视觉代理实现智能化的Web应用测试,支持本地运行和CI/CD集成。
249 15
测试工程师要失业?Magnitude:开源AI Agent驱动的端到端测试框架,让Web测试更智能,自动完善测试用例!
|
1月前
|
机器学习/深度学习 人工智能 测试技术
让AI学会"看屏幕操作"!豆包1.5·UI-TARS:字节跳动推出 GUI Agent 黑科技,办公效率暴增300%
字节跳动推出的豆包1.5·UI-TARS是首个整合视觉理解、逻辑推理与界面操作的GUI Agent模型,无需预定义规则即可完成复杂图形界面交互任务,已在火山方舟平台提供服务。
221 2
让AI学会"看屏幕操作"!豆包1.5·UI-TARS:字节跳动推出 GUI Agent 黑科技,办公效率暴增300%
|
2月前
|
人工智能 监控 数据可视化
Agent TARS:一键让AI托管电脑!字节开源PC端多模态AI助手,无缝集成浏览器与系统操作
Agent TARS 是一款开源的多模态AI助手,能够通过视觉解析网页并无缝集成命令行和文件系统,帮助用户高效完成复杂任务。
2900 13
Agent TARS:一键让AI托管电脑!字节开源PC端多模态AI助手,无缝集成浏览器与系统操作

热门文章

最新文章