【AI Agent系列】【MetaGPT多智能体学习】4. 基于MetaGPT的Team组件开发你的第一个智能体团队

简介: 【AI Agent系列】【MetaGPT多智能体学习】4. 基于MetaGPT的Team组件开发你的第一个智能体团队

本系列文章跟随《MetaGPT多智能体课程》(https://github.com/datawhalechina/hugging-multi-agent),深入理解并实践多智能体系统的开发。

本文为该课程的第四章(多智能体开发)的第二篇笔记。主要是对MetaGPT中Team组件的学习和实践。

系列笔记

0. Team组件介绍

我们在刚开始搭建环境的时候,跑的第一个例子就使用了Team组件。当时只是复制粘贴,用它将程序跑起来了,但其背后的机制和原理是什么还没有学习过。下面从部分源码中,看下Team组件的运行机制。

0.1 基本参数

class Team(BaseModel):
    """
    Team: Possesses one or more roles (agents), SOP (Standard Operating Procedures), and a env for instant messaging,
    dedicated to env any multi-agent activity, such as collaboratively writing executable code.
    团队:拥有一个或多个角色(代理人)、标准操作流程(SOP)和一个用于即时通讯的环境,致力于开展任何多代理活动,如协作编写可执行代码。
    """
    model_config = ConfigDict(arbitrary_types_allowed=True)
    env: Optional[Environment] = None
    investment: float = Field(default=10.0)
    idea: str = Field(default="")

其中主要三个参数:

  • env:多智能体运行的环境
  • investment:投资,用来设置整个程序运行的预算,控制token消耗,当程序运行超过这个预设值后,会强制停止
  • idea:用户的输入、需求

0.2 重要函数

0.2.1 hire - 雇佣员工,往Team中添加Role

这个函数实现的功能其实就是往自身的环境中添加Role。

def hire(self, roles: list[Role]):
    """Hire roles to cooperate"""
    self.env.add_roles(roles)

0.2.2 invest - 投资,设置程序总预算

用来设置整个程序运行的预算,控制token消耗,当程序运行超过这个预设值后,会强制停止。

def invest(self, investment: float):
    """Invest company. raise NoMoneyException when exceed max_budget."""
    self.investment = investment
    self.cost_manager.max_budget = investment
    logger.info(f"Investment: ${investment}.")

0.2.3 run_project

这个函数的名有点欺骗性,你可能以为这是开始运行整个Team的入口,其实不是。它只是往Team的环境中放入第一条用户消息而已。

idea 为用户的输入或需求。这个函数的主要功能是调用了 Environment 的 publish_message 往环境中送入了一个用户消息。

def run_project(self, idea, send_to: str = ""):
    """Run a project from publishing user requirement."""
    self.idea = idea
    # Human requirement.
    self.env.publish_message(
        Message(role="Human", content=idea, cause_by=UserRequirement, send_to=send_to or MESSAGE_ROUTE_TO_ALL),
        peekable=False,
    )

0.2.4 run - Team开始运行的入口

这个才是Team运行的入口函数,当输入了idea时,会转到 run_project 去往自身的环境中放置用户消息。然后在 while循环中,循环运行各个Role。

n_round指定循环的次数,这里默认为3,执行三次 self.env.run()env.run我们上篇文章已经知道了,就是顺序执行环境中所有Role的run函数。

_check_balance函数的功能是检查当前程序消耗的token或钱数是否超过了预算。如果超过了预算,直接弹窗警告 raise NoMoneyException

@serialize_decorator
async def run(self, n_round=3, idea="", send_to="", auto_archive=True):
    """Run company until target round or no money"""
    if idea:
        self.run_project(idea=idea, send_to=send_to)
    while n_round > 0:
        # self._save()
        n_round -= 1
        logger.debug(f"max {n_round=} left.")
        self._check_balance()
        await self.env.run()
    self.env.archive(auto_archive)
    return self.env.history
def _check_balance(self):
    if self.cost_manager.total_cost >= self.cost_manager.max_budget:
        raise NoMoneyException(self.cost_manager.total_cost, f"Insufficient funds: {self.cost_manager.max_budget}")

0.3 总结

看了上面的几个重要函数,是否觉得有点眼熟?这不就是将上篇文章中我们在运行多智能体系统时的main函数拆分成了 hire / run_project / run 函数嘛。

async def main(topic: str, n_round=3):
  ## 类比 Team 的 hire 函数添加 Roles
    classroom.add_roles([Student(), Teacher()])
  ## 类比 Team 的 run_project 函数往环境中写入用户消息
    classroom.publish_message(
        Message(role="Human", content=topic, cause_by=UserRequirement,
                send_to='' or MESSAGE_ROUTE_TO_ALL),
        peekable=False,
    )
  ## 类比 Team 的 run 函数控制循环次数
    while n_round > 0:
        # self._save()
        n_round -= 1
        logger.debug(f"max {n_round=} left.")
        await classroom.run()
    return classroom.history

所以,Team 组件的本质,就是对 Environment 接口的封装,同时在此基础上增加了 invest 的预算控制而已。

1. 基于Team开发你的第一个智能体团队

1.1 demo需求描述

总的需求,简单的软件开发流程:一个写代码,一个测试代码,一个review代码。

所以需要三个智能体Role:

  • SimpleCoder,Action是 SimpleWriteCode,写代码
  • SimpleTester,Action是 SimpleWriteTest,接收 SimpleCoder 的代码进行测试。也接收 SimpleReviewer 的修改意见进行测试用例改写。
  • SimpleReviewer,Action是 SimpleWriteReview,接收 SimpleTester 的测试用例,检查其覆盖范围和质量,给出测试用例的修改意见。

1.2 写代码

1.2.1 SimpleCoder

SimpleCoder主要用来写代码。

  • 它的Action是SimpleWriteCode,通过 self.set_actions([SimpleWriteCode]) 将该Action设置给SimpleCoder
  • 它的行动指令来源是 UserRequirement,当环境中出现 UserRequirement 来源的消息时,它开始执行Action。通过 self._watch([UserRequirement]) 设置其关注的消息来源。
def parse_code(rsp):
    pattern = r"```python(.*)```"
    match = re.search(pattern, rsp, re.DOTALL)
    code_text = match.group(1) if match else rsp
    return code_text
class SimpleWriteCode(Action):
    PROMPT_TEMPLATE: str = """
    Write a python function that can {instruction}.
    Return ```python your_code_here ```with NO other texts,
    your code:
    """
    name: str = "SimpleWriteCode"
    async def run(self, instruction: str):
        prompt = self.PROMPT_TEMPLATE.format(instruction=instruction)
        rsp = await self._aask(prompt)
        code_text = parse_code(rsp)
        return code_text
class SimpleCoder(Role):
    name: str = "Alice"
    profile: str = "SimpleCoder"
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self._watch([UserRequirement])
        self.set_actions([SimpleWriteCode])

1.2.2 SimpleTester

SimpleTester 用来写测试用例代码。

  • 其Action为SimpleWriteTest,通过 self.set_actions([SimpleWriteTest]) 指定。
  • 其行动指令来源,一个是 SimpleWriteCode,接收主代码,根据主代码写单测的测试用例。第二个来源是 SimpleWriteReview,接收测试用例修改意见,根据修改意见完善测试用例。通过 self._watch([SimpleWriteCode, SimpleWriteReview]) 来指定关注的消息来源。
class SimpleWriteTest(Action):
    PROMPT_TEMPLATE: str = """
    Context: {context}
    Write {k} unit tests using pytest for the given function, assuming you have imported it.
    Return ```python your_code_here ```with NO other texts,
    your code:
    """
    name: str = "SimpleWriteTest"
    async def run(self, context: str, k: int = 3):
        prompt = self.PROMPT_TEMPLATE.format(context=context, k=k)
        rsp = await self._aask(prompt)
        code_text = parse_code(rsp)
        return code_text
class SimpleTester(Role):
    name: str = "Bob"
    profile: str = "SimpleTester"
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.set_actions([SimpleWriteTest])
        # self._watch([SimpleWriteCode])
        self._watch([SimpleWriteCode, SimpleWriteReview])  # feel free to try this too
        
    async def _act(self) -> Message:
        logger.info(f"{self._setting}: to do {self.rc.todo}({self.rc.todo.name})")
        todo = self.rc.todo
        # context = self.get_memories(k=1)[0].content # use the most recent memory as context
        context = self.get_memories()  # use all memories as context
        code_text = await todo.run(context, k=5)  # specify arguments
        msg = Message(content=code_text, role=self.profile, cause_by=type(todo))
        return msg

1.2.3 SimpleReviewer

SimpleReviewer 用来对测试用例代码进行Review,给出修改意见。

  • 其Action为SimpleWriteReview,通过 self.set_actions([SimpleWriteReview]) 指定。
  • 其行动指令来源为 SimpleWriteTest,接收测试用例代码,根据测试用例代码给出修改意见。通过 self._watch([SimpleWriteTest]) 来指定关注的消息来源。
class SimpleWriteReview(Action):
    PROMPT_TEMPLATE: str = """
    Context: {context}
    Review the test cases and provide one critical comments:
    """
    name: str = "SimpleWriteReview"
    async def run(self, context: str):
        prompt = self.PROMPT_TEMPLATE.format(context=context)
        rsp = await self._aask(prompt)
        return rsp
class SimpleReviewer(Role):
    name: str = "Charlie"
    profile: str = "SimpleReviewer"
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.set_actions([SimpleWriteReview])
        self._watch([SimpleWriteTest])

1.2.4 组成Team并运行

下面就是将上面的三个 Role 放到一个 Team 中。

  • hire 函数添加上面的三个 Role 到 Team 中
  • invest 函数设置总预算
  • run_project 函数将 idea 任务放到环境中
  • run 函数让整个 Team 运行起来
async def main(
    idea: str = "write a function that calculates the product of a list",
    investment: float = 3.0,
    n_round: int = 5,
    add_human: bool = False,
):
    logger.info(idea)
    team = Team()
    team.hire(
        [
            SimpleCoder(),
            SimpleTester(),
            SimpleReviewer(is_human=add_human),
        ]
    )
    team.invest(investment=investment)
    team.run_project(idea)
    await team.run(n_round=n_round)
if __name__ == "__main__":
    fire.Fire(main)

1.2.5 完整代码

"""
Filename: MetaGPT/examples/build_customized_multi_agents.py
Created Date: Wednesday, November 15th 2023, 7:12:39 pm
Author: garylin2099
"""
import re
import fire
from metagpt.actions import Action, UserRequirement
from metagpt.logs import logger
from metagpt.roles import Role
from metagpt.schema import Message
from metagpt.team import Team
def parse_code(rsp):
    pattern = r"```python(.*)```"
    match = re.search(pattern, rsp, re.DOTALL)
    code_text = match.group(1) if match else rsp
    return code_text
class SimpleWriteCode(Action):
    PROMPT_TEMPLATE: str = """
    Write a python function that can {instruction}.
    Return ```python your_code_here ```with NO other texts,
    your code:
    """
    name: str = "SimpleWriteCode"
    async def run(self, instruction: str):
        prompt = self.PROMPT_TEMPLATE.format(instruction=instruction)
        rsp = await self._aask(prompt)
        code_text = parse_code(rsp)
        return code_text
class SimpleCoder(Role):
    name: str = "Alice"
    profile: str = "SimpleCoder"
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self._watch([UserRequirement])
        self.set_actions([SimpleWriteCode])
class SimpleWriteTest(Action):
    PROMPT_TEMPLATE: str = """
    Context: {context}
    Write {k} unit tests using pytest for the given function, assuming you have imported it.
    Return ```python your_code_here ```with NO other texts,
    your code:
    """
    name: str = "SimpleWriteTest"
    async def run(self, context: str, k: int = 3):
        prompt = self.PROMPT_TEMPLATE.format(context=context, k=k)
        rsp = await self._aask(prompt)
        code_text = parse_code(rsp)
        return code_text
class SimpleTester(Role):
    name: str = "Bob"
    profile: str = "SimpleTester"
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.set_actions([SimpleWriteTest])
        # self._watch([SimpleWriteCode])
        self._watch([SimpleWriteCode, SimpleWriteReview])  # feel free to try this too
    async def _act(self) -> Message:
        logger.info(f"{self._setting}: to do {self.rc.todo}({self.rc.todo.name})")
        todo = self.rc.todo
        # context = self.get_memories(k=1)[0].content # use the most recent memory as context
        context = self.get_memories()  # use all memories as context
        code_text = await todo.run(context, k=5)  # specify arguments
        msg = Message(content=code_text, role=self.profile, cause_by=type(todo))
        return msg
class SimpleWriteReview(Action):
    PROMPT_TEMPLATE: str = """
    Context: {context}
    Review the test cases and provide one critical comments:
    """
    name: str = "SimpleWriteReview"
    async def run(self, context: str):
        prompt = self.PROMPT_TEMPLATE.format(context=context)
        rsp = await self._aask(prompt)
        return rsp
class SimpleReviewer(Role):
    name: str = "Charlie"
    profile: str = "SimpleReviewer"
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.set_actions([SimpleWriteReview])
        self._watch([SimpleWriteTest])
async def main(
    idea: str = "write a function that calculates the product of a list",
    investment: float = 3.0,
    n_round: int = 5,
    add_human: bool = False,
):
    logger.info(idea)
    team = Team()
    team.hire(
        [
            SimpleCoder(),
            SimpleTester(),
            SimpleReviewer(is_human=add_human),
        ]
    )
    team.invest(investment=investment)
    team.run_project(idea)
    await team.run(n_round=n_round)
    # 最后这两句可以合成一句:await team.run(n_round=n_round, idea=idea)
if __name__ == "__main__":
    fire.Fire(main)

1.2.6 运行过程及结果展示

(1)用户消息输入,SimpleCoder开始动作,写出代码

(2)SimpleTester 接收到 SimpleCoder 写完的代码,开始写测试用例。

(3)SimpleReviewer 接收到 SimpleTester 写的测试用例,开始审核并给出修改意见

(4)SimpleTester 接收到 SimpleReviewer 的修改意见,开始优化测试用例。

(5)SimpleReviewer 接收到 SimpleTester 优化后的测试用例,进行审核并再次给出修改意见

(6)SimpleTester 和 SimpleReviewer 之间循环交互 n 次

2. 总结

通过本节内容,学习了MetaGPT中Team组件的原理与使用方法。

Team 组件就是在原来 Environment 组件的基础上进行封装,增加了一个invest来控制整体成本。其主要函数为 hireinvestrun


站内文章一览

相关文章
|
4天前
|
人工智能 开发框架 安全
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
Smolagents 是 Hugging Face 推出的轻量级开源库,旨在简化智能代理的构建过程,支持多种大语言模型集成和代码执行代理功能。
158 68
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
|
1天前
|
存储 人工智能 自然语言处理
AI Agent与SaaS工具协同发展的未来:企业智能化的全新范式
AI Agent以自主性和智能化为核心,适合复杂任务的动态执行;而SaaS工具则注重服务的完整性和易用性,适合标准化业务需求。
27 14
AI Agent与SaaS工具协同发展的未来:企业智能化的全新范式
|
7天前
|
机器学习/深度学习 人工智能 算法
FinRobot:开源的金融专业 AI Agent,提供市场预测、报告分析和交易策略等金融解决方案
FinRobot 是一个开源的 AI Agent 平台,专注于金融领域的应用,通过大型语言模型(LLMs)构建复杂的金融分析和决策工具,提供市场预测、文档分析和交易策略等多种功能。
75 13
FinRobot:开源的金融专业 AI Agent,提供市场预测、报告分析和交易策略等金融解决方案
|
6天前
|
存储 人工智能 开发框架
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
Eliza 是一个开源的多代理模拟框架,支持多平台连接、多模型集成,能够快速构建智能、高效的AI系统。
72 8
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
|
9天前
|
人工智能 开发框架 算法
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。
155 10
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
谷歌最新推出的Gemini 2.0是一款原生多模态输入输出的AI模型,以Agent技术为核心,支持多种数据类型的输入与输出,具备强大的性能和多语言音频输出能力。本文将详细介绍Gemini 2.0的主要功能、技术原理及其在多个领域的应用场景。
145 20
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
|
13天前
|
存储 人工智能 人机交互
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
PC Agent 是上海交通大学与 GAIR 实验室联合推出的智能 AI 系统,能够模拟人类认知过程,自动化执行复杂的数字任务,如组织研究材料、起草报告等,展现了卓越的数据效率和实际应用潜力。
97 1
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
|
27天前
|
人工智能 API 语音技术
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
TEN Agent 是一个开源的实时多模态 AI 代理框架,集成了 OpenAI Realtime API 和 RTC 技术,支持语音、文本和图像的多模态交互,具备实时通信、模块化设计和多语言支持等功能,适用于智能客服、实时语音助手等多种场景。
145 15
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
|
13天前
|
传感器 人工智能 安全
杨笛一团队:一个弹窗,就能把AI智能体操控电脑整懵了
杨笛一团队最新研究揭示,简单弹窗可操控AI智能体,使其在执行任务时陷入混乱。实验显示,在OSWorld和VisualWebArena环境中,攻击成功率分别达86%和60%以上。该发现强调了AI安全的重要性,提醒我们在享受AI便利的同时需警惕潜在风险。研究指出,弹窗设计中的四个关键要素(注意力钩子、指令、信息横幅、ALT描述符)对攻击成功至关重要,并建议通过安全训练、人类监督和环境感知提升防御能力。
42 13
|
9天前
|
人工智能 自然语言处理 前端开发
三大行业案例:AI大模型+Agent实践全景
本文将从AI Agent和大模型的发展背景切入,结合51Talk、哈啰出行以及B站三个各具特色的行业案例,带你一窥事件驱动架构、RAG技术、人机协作流程,以及一整套行之有效的实操方法。具体包含内容有:51Talk如何让智能客服“主动进攻”,带来约课率、出席率双提升;哈啰出行如何由Copilot模式升级为Agent模式,并应用到客服、营销策略生成等多个业务场景;B站又是如何借力大模型与RAG方法,引爆了平台的高效内容检索和强互动用户体验。
108 5