PolarDB 开源版 轨迹应用实践 - 出行、配送、快递等业务的调度; 传染溯源; 刑侦

简介: 背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理,PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出,将数据变成生产力。本文将介绍PolarDB 开源版 轨迹应用实践,例如:出行、配送、快递等业务的调度快递员...

背景

PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理,PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出,将数据变成生产力。

本文将介绍PolarDB 开源版 轨迹应用实践,例如:

  • 出行、配送、快递等业务的调度

    • 快递员有预规划的配送轨迹(轨迹)

    • 客户有发货需求(时间、位置)

    • 根据轨迹估算最近的位置和时间

  • 通过多个嫌疑人的轨迹,计算嫌疑人接触的地点、时间点

  • 根据轨迹, 对传染源进行溯源

  • 测试环境为macOS+docker,PolarDB部署请参考如何用 PolarDB 证明巴菲特的投资理念 - 包括PolarDB简单部署

轨迹介绍

轨迹的定义:

  • 位置1、位置2、...位置N 组成的线段, 加上 开始时间、结束时间

  • 轨迹的常见计算:

  • 两个轨迹何时最接近

  • 最近的距离是多少

  • 两个轨迹最近时的位置分别是什么

相关函数

https://postgis.net/docs/manual-3.3/reference.html#Temporal

8.18. Linear Referencing

  • ST_LineInterpolatePoint — Returns a point interpolated along a line at a fractional location.

  • ST_3DLineInterpolatePoint — Returns a point interpolated along a 3D line at a fractional location.

  • ST_LineInterpolatePoints — Returns points interpolated along a line at a fractional interval.

  • ST_LineLocatePoint — Returns the fractional location of the closest point on a line to a point.

  • ST_LineSubstring — Returns the part of a line between two fractional locations.

  • ST_LocateAlong — Returns the point(s) on a geometry that match a measure value.

  • ST_LocateBetween — Returns the portions of a geometry that match a measure range.

  • ST_LocateBetweenElevations — Returns the portions of a geometry that lie in an elevation (Z) range.

  • ST_InterpolatePoint — Returns the interpolated measure of a geometry closest to a point.

  • ST_AddMeasure — Interpolates measures along a linear geometry.

8.19. Trajectory Functions Abstract These functions support working with trajectories. A trajectory is a linear geometry with increasing measures (M value) on each coordinate. Spatio-temporal data can be modeled by using relative times (such as the epoch) as the measure values.

  • ST_IsValidTrajectory — Tests if the geometry is a valid trajectory.

  • ST_ClosestPointOfApproach — Returns a measure at the closest point of approach of two trajectories.

  • ST_DistanceCPA — Returns the distance between the closest point of approach of two trajectories.

  • ST_CPAWithin — Tests if the closest point of approach of two trajectories is within the specified distance.

轨迹计算举例

  1. 构造3维轨迹:

ST_AddMeasure('LINESTRING Z (0 0 0, 10 0 5, 1 1 1)'::geometry,  -- 三个3维点  
    extract(epoch from '2015-05-26 10:00'::timestamptz),  -- 开始时间  
    extract(epoch from '2015-05-26 11:00'::timestamptz)   -- 结束时间  
)  
  1. 构造2维轨迹:

ST_AddMeasure('LINESTRING (0 0, 10 0, 1 1)'::geometry,  -- 三个2维点  
    extract(epoch from '2015-05-26 10:00'::timestamptz),  -- 开始时间  
    extract(epoch from '2015-05-26 11:00'::timestamptz)   -- 结束时间  
)  
  1. 返回2条轨迹距离最接近时的第一个时间点(因为2条轨迹可能有多个时间处于最近距离, 但是这里只返回最早的时间点, 如果要求后面的时间点, 可以切分线段)。

  • 两个轨迹何时最接近

  • 最近的距离是多少

  • 两个轨迹最近时的位置分别是什么

-- Return the time in which two objects moving between 10:00 and 11:00  
-- are closest to each other and their distance at that point  
WITH inp AS ( SELECT  
  ST_AddMeasure('LINESTRING Z (0 0 0, 10 0 5)'::geometry,  -- 如果轨迹是一个点, 这里就直接填2个一样位置的点  
    extract(epoch from '2015-05-26 10:00'::timestamptz),  
    extract(epoch from '2015-05-26 11:00'::timestamptz)  
  ) a,  
  ST_AddMeasure('LINESTRING Z (0 2 10, 12 1 2, 15 3 5)'::geometry,  -- 两条轨迹的点数可以不一样  
    extract(epoch from '2015-05-26 10:00'::timestamptz),  
    extract(epoch from '2015-05-26 11:00'::timestamptz)  
  ) b  
), cpa AS (  
  SELECT ST_ClosestPointOfApproach(a,b) m FROM inp  -- 计算a,b 2条轨迹距离最近时的最早时间点  
), points AS (  
  SELECT ST_Force3DZ(ST_GeometryN(ST_LocateAlong(a,m),1)) pa,   -- ST_LocateAlong(a,m)  计算a轨迹在某个时间点m对应的位置点(集合点)   
         ST_Force3DZ(ST_GeometryN(ST_LocateAlong(b,m),1)) pb    -- ST_GeometryN 返回集合的第一个点, 由于a,b线段是3维线段, 所以返回后需要再使用ST_Force3DZ格式化一下?  
  FROM inp, cpa  
)  
SELECT st_astext(pa) pa, st_astext(pb) pb,   
       to_timestamp(m) t,  -- a,b线段距离最近时的最早的时间点m   
       ST_Distance(pa,pb) distance  -- a,b线段最接近的pa,pb点的距离   
FROM points, cpa;  
  
                       pa                        |                               pb                               |               t               |     distance       
-------------------------------------------------+----------------------------------------------------------------+-------------------------------+------------------  
 POINT Z (5.798478121227689 0 2.899239060613844) | POINT Z (9.041623081002845 1.24653140991643 3.972251279331437) | 2015-05-26 10:34:47.452124+00 | 3.47445388313376  
(1 row)  

以上SQL应用场景举例:

  1. 出行、配送、快递等业务的调度, 例如

快递员预规划的配送轨迹(轨迹a)

客户有发货需求(时间、位置)(轨迹b)

  1. 多个嫌疑人的轨迹

计算嫌疑人接触的地点、时间点

  1. 根据传染病人的多人多轨迹进行轨迹的碰撞计算, 对传染源进行溯源追踪

参考

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
3月前
|
SQL 关系型数据库 MySQL
开源新发布|PolarDB-X v2.4.2开源生态适配升级
PolarDB-X v2.4.2开源发布,重点完善生态能力:新增客户端驱动、开源polardbx-proxy组件,支持读写分离与高可用;强化DDL变更、扩缩容等运维能力,并兼容MySQL主备复制及MCP AI生态。
开源新发布|PolarDB-X v2.4.2开源生态适配升级
|
6月前
|
关系型数据库 MySQL 分布式数据库
安全可靠的PolarDB V2.0 (兼容MySQL)产品能力及应用场景
PolarDB分布式轻量版采用软件输出方式,能够部署在您的自主环境中。PolarDB分布式轻量版保留并承载了云原生数据库PolarDB分布式版技术团队深厚的内核优化成果,在保持高性能的同时,显著降低成本。
646 140
|
3月前
|
SQL 关系型数据库 MySQL
开源新发布|PolarDB-X v2.4.2开源生态适配升级
PolarDB-X v2.4.2发布,新增开源Proxy组件与客户端驱动,支持读写分离、无感高可用切换及DDL在线变更,兼容MySQL生态,提升千亿级大表运维稳定性。
832 24
开源新发布|PolarDB-X v2.4.2开源生态适配升级
|
4月前
|
存储 弹性计算 Cloud Native
云原生数据库的演进与应用实践
随着企业业务扩展,传统数据库难以应对高并发与弹性需求。云原生数据库应运而生,具备计算存储分离、弹性伸缩、高可用等核心特性,广泛应用于电商、金融、物联网等场景。阿里云PolarDB、Lindorm等产品已形成完善生态,助力企业高效处理数据。未来,AI驱动、Serverless与多云兼容将推动其进一步发展。
242 8
|
5月前
|
人工智能 关系型数据库 MySQL
开源PolarDB-X:单节点误删除binlog恢复
本文由邵亚鹏撰写,分享了在使用开源PolarDB-X过程中,因误删binlog导致数据库服务无法启动的问题及恢复过程。作者结合实践经验,详细介绍了在无备份情况下如何通过单节点恢复机制重启数据库,并提出了避免类似问题的几点建议,包括采用高可用部署、定期备份及升级至最新版本等。
|
6月前
|
人工智能 关系型数据库 分布式数据库
PolarDB Supabase 助力快速构建现代应用
简介:本文介绍了在AI时代背景下,如何通过阿里云瑶池推出的全托管Supabase服务快速构建现代应用。该服务基于开源Supabase与PolarDB-PG数据库,提供一站式后端解决方案,涵盖实时数据库、身份认证、文件存储及AI能力,助力开发者高效迭代业务,降低运维复杂度。适用于协作类应用、SaaS平台、移动开发等多种场景。
|
存储 关系型数据库 MySQL
开源PolarDB- X|替换Opengemini时序数据场景下产品力校验
本文作者:黄周霖,数据库技术专家,就职于南京北路智控股份有限公司,负责数据库运维及大数据开发。
|
9月前
|
关系型数据库 分布式数据库 数据库
一库多能:阿里云PolarDB三大引擎、四种输出形态,覆盖企业数据库全场景
PolarDB是阿里云自研的新一代云原生数据库,提供极致弹性、高性能和海量存储。它包含三个版本:PolarDB-M(兼容MySQL)、PolarDB-PG(兼容PostgreSQL及Oracle语法)和PolarDB-X(分布式数据库)。支持公有云、专有云、DBStack及轻量版等多种形态,满足不同场景需求。2021年,PolarDB-PG与PolarDB-X开源,内核与商业版一致,推动国产数据库生态发展,同时兼容主流国产操作系统与芯片,获得权威安全认证。
|
6月前
|
存储 关系型数据库 分布式数据库
喜报|阿里云PolarDB数据库(分布式版)荣获国内首台(套)产品奖项
阿里云PolarDB数据库管理软件(分布式版)荣获「2024年度国内首版次软件」称号,并跻身《2024年度浙江省首台(套)推广应用典型案例》。

热门文章

最新文章