PolarDB 开源版 轨迹应用实践 - 出行、配送、快递等业务的调度; 传染溯源; 刑侦

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理,PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出,将数据变成生产力。本文将介绍PolarDB 开源版 轨迹应用实践,例如:出行、配送、快递等业务的调度快递员...

背景

PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理,PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出,将数据变成生产力。

本文将介绍PolarDB 开源版 轨迹应用实践,例如:

  • 出行、配送、快递等业务的调度

    • 快递员有预规划的配送轨迹(轨迹)

    • 客户有发货需求(时间、位置)

    • 根据轨迹估算最近的位置和时间

  • 通过多个嫌疑人的轨迹,计算嫌疑人接触的地点、时间点

  • 根据轨迹, 对传染源进行溯源

  • 测试环境为macOS+docker,PolarDB部署请参考如何用 PolarDB 证明巴菲特的投资理念 - 包括PolarDB简单部署

轨迹介绍

轨迹的定义:

  • 位置1、位置2、...位置N 组成的线段, 加上 开始时间、结束时间

  • 轨迹的常见计算:

  • 两个轨迹何时最接近

  • 最近的距离是多少

  • 两个轨迹最近时的位置分别是什么

相关函数

https://postgis.net/docs/manual-3.3/reference.html#Temporal

8.18. Linear Referencing

  • ST_LineInterpolatePoint — Returns a point interpolated along a line at a fractional location.

  • ST_3DLineInterpolatePoint — Returns a point interpolated along a 3D line at a fractional location.

  • ST_LineInterpolatePoints — Returns points interpolated along a line at a fractional interval.

  • ST_LineLocatePoint — Returns the fractional location of the closest point on a line to a point.

  • ST_LineSubstring — Returns the part of a line between two fractional locations.

  • ST_LocateAlong — Returns the point(s) on a geometry that match a measure value.

  • ST_LocateBetween — Returns the portions of a geometry that match a measure range.

  • ST_LocateBetweenElevations — Returns the portions of a geometry that lie in an elevation (Z) range.

  • ST_InterpolatePoint — Returns the interpolated measure of a geometry closest to a point.

  • ST_AddMeasure — Interpolates measures along a linear geometry.

8.19. Trajectory Functions Abstract These functions support working with trajectories. A trajectory is a linear geometry with increasing measures (M value) on each coordinate. Spatio-temporal data can be modeled by using relative times (such as the epoch) as the measure values.

  • ST_IsValidTrajectory — Tests if the geometry is a valid trajectory.

  • ST_ClosestPointOfApproach — Returns a measure at the closest point of approach of two trajectories.

  • ST_DistanceCPA — Returns the distance between the closest point of approach of two trajectories.

  • ST_CPAWithin — Tests if the closest point of approach of two trajectories is within the specified distance.

轨迹计算举例

  1. 构造3维轨迹:

ST_AddMeasure('LINESTRING Z (0 0 0, 10 0 5, 1 1 1)'::geometry,  -- 三个3维点  
    extract(epoch from '2015-05-26 10:00'::timestamptz),  -- 开始时间  
    extract(epoch from '2015-05-26 11:00'::timestamptz)   -- 结束时间  
)  
  1. 构造2维轨迹:

ST_AddMeasure('LINESTRING (0 0, 10 0, 1 1)'::geometry,  -- 三个2维点  
    extract(epoch from '2015-05-26 10:00'::timestamptz),  -- 开始时间  
    extract(epoch from '2015-05-26 11:00'::timestamptz)   -- 结束时间  
)  
  1. 返回2条轨迹距离最接近时的第一个时间点(因为2条轨迹可能有多个时间处于最近距离, 但是这里只返回最早的时间点, 如果要求后面的时间点, 可以切分线段)。

  • 两个轨迹何时最接近

  • 最近的距离是多少

  • 两个轨迹最近时的位置分别是什么

-- Return the time in which two objects moving between 10:00 and 11:00  
-- are closest to each other and their distance at that point  
WITH inp AS ( SELECT  
  ST_AddMeasure('LINESTRING Z (0 0 0, 10 0 5)'::geometry,  -- 如果轨迹是一个点, 这里就直接填2个一样位置的点  
    extract(epoch from '2015-05-26 10:00'::timestamptz),  
    extract(epoch from '2015-05-26 11:00'::timestamptz)  
  ) a,  
  ST_AddMeasure('LINESTRING Z (0 2 10, 12 1 2, 15 3 5)'::geometry,  -- 两条轨迹的点数可以不一样  
    extract(epoch from '2015-05-26 10:00'::timestamptz),  
    extract(epoch from '2015-05-26 11:00'::timestamptz)  
  ) b  
), cpa AS (  
  SELECT ST_ClosestPointOfApproach(a,b) m FROM inp  -- 计算a,b 2条轨迹距离最近时的最早时间点  
), points AS (  
  SELECT ST_Force3DZ(ST_GeometryN(ST_LocateAlong(a,m),1)) pa,   -- ST_LocateAlong(a,m)  计算a轨迹在某个时间点m对应的位置点(集合点)   
         ST_Force3DZ(ST_GeometryN(ST_LocateAlong(b,m),1)) pb    -- ST_GeometryN 返回集合的第一个点, 由于a,b线段是3维线段, 所以返回后需要再使用ST_Force3DZ格式化一下?  
  FROM inp, cpa  
)  
SELECT st_astext(pa) pa, st_astext(pb) pb,   
       to_timestamp(m) t,  -- a,b线段距离最近时的最早的时间点m   
       ST_Distance(pa,pb) distance  -- a,b线段最接近的pa,pb点的距离   
FROM points, cpa;  
  
                       pa                        |                               pb                               |               t               |     distance       
-------------------------------------------------+----------------------------------------------------------------+-------------------------------+------------------  
 POINT Z (5.798478121227689 0 2.899239060613844) | POINT Z (9.041623081002845 1.24653140991643 3.972251279331437) | 2015-05-26 10:34:47.452124+00 | 3.47445388313376  
(1 row)  

以上SQL应用场景举例:

  1. 出行、配送、快递等业务的调度, 例如

快递员预规划的配送轨迹(轨迹a)

客户有发货需求(时间、位置)(轨迹b)

  1. 多个嫌疑人的轨迹

计算嫌疑人接触的地点、时间点

  1. 根据传染病人的多人多轨迹进行轨迹的碰撞计算, 对传染源进行溯源追踪

参考

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
3月前
|
人工智能 关系型数据库 分布式数据库
PolarDB Supabase 助力快速构建现代应用
简介:本文介绍了在AI时代背景下,如何通过阿里云瑶池推出的全托管Supabase服务快速构建现代应用。该服务基于开源Supabase与PolarDB-PG数据库,提供一站式后端解决方案,涵盖实时数据库、身份认证、文件存储及AI能力,助力开发者高效迭代业务,降低运维复杂度。适用于协作类应用、SaaS平台、移动开发等多种场景。
|
5月前
|
存储 Cloud Native 关系型数据库
PolarDB开源:云原生数据库的架构革命
本文围绕开源核心价值、社区运营实践和技术演进路线展开。首先解读存算分离架构的三大突破,包括基于RDMA的分布式存储、计算节点扩展及存储池扩容机制,并强调与MySQL的高兼容性。其次分享阿里巴巴开源治理模式,涵盖技术决策、版本发布和贡献者成长体系,同时展示企业应用案例。最后展望技术路线图,如3.0版本的多写多读架构、智能调优引擎等特性,以及开发者生态建设举措,推荐使用PolarDB-Operator实现高效部署。
278 3
|
5月前
|
SQL 关系型数据库 分布式数据库
PolarDB开源数据库入门教程
PolarDB是阿里云推出的云原生数据库,基于PostgreSQL、MySQL和Oracle引擎构建,具备高性能、高扩展性和高可用性。其开源版采用计算与存储分离架构,支持快速弹性扩展和100%兼容PostgreSQL/MySQL。本文介绍了PolarDB的安装方法(Docker部署或源码编译)、基本使用(连接数据库、创建表等)及高级特性(计算节点扩展、存储自动扩容、并行查询等)。同时提供了性能优化建议和监控维护方法,帮助用户在生产环境中高效使用PolarDB。
1640 21
|
5月前
|
Cloud Native 关系型数据库 分布式数据库
PolarDB开源:云原生数据库的新篇章
阿里云自研的云原生数据库PolarDB于2023年5月正式开源,采用“存储计算分离”架构,具备高性能、高可用及全面兼容性。其开源版本提供企业级数据库解决方案,支持MySQL、PostgreSQL和Oracle语法,适用于高并发OLTP、核心业务系统等场景。PolarDB通过开放治理与开发者工具构建完整生态,并展望更丰富的插件功能与AI集成,为中国云原生数据库技术发展贡献重要力量。
463 17
|
5月前
|
存储 关系型数据库 分布式数据库
PolarDB开源进阶篇:深度解析与实战优化指南
PolarDB是阿里云开源的云原生数据库,采用计算-存储分离架构,结合高性能共享存储与Parallel Raft多副本一致性协议,实现微秒级延迟和卓越性能。本文深入解析其架构设计,涵盖智能调度层、性能优化技巧(如查询优化器调优和分布式事务提升)、高可用与容灾配置、扩展功能开发指南以及监控运维体系。同时,通过电商平台优化案例展示实际应用效果,并展望未来演进方向,包括AI结合、多模数据库支持及Serverless架构发展。作为云原生数据库代表,PolarDB为开发者提供了强大支持和广阔前景。
294 16
|
6月前
|
关系型数据库 分布式数据库 数据库
一库多能:阿里云PolarDB三大引擎、四种输出形态,覆盖企业数据库全场景
PolarDB是阿里云自研的新一代云原生数据库,提供极致弹性、高性能和海量存储。它包含三个版本:PolarDB-M(兼容MySQL)、PolarDB-PG(兼容PostgreSQL及Oracle语法)和PolarDB-X(分布式数据库)。支持公有云、专有云、DBStack及轻量版等多种形态,满足不同场景需求。2021年,PolarDB-PG与PolarDB-X开源,内核与商业版一致,推动国产数据库生态发展,同时兼容主流国产操作系统与芯片,获得权威安全认证。
|
6天前
|
Cloud Native 关系型数据库 MySQL
免费体验!高效实现自建 MySQL 数据库平滑迁移至 PolarDB-X
PolarDB-X 是阿里云推出的云原生分布式数据库,支持PB级存储扩展、高并发访问与数据强一致,助力企业实现MySQL平滑迁移。现已开放免费体验,点击即享高效、稳定的数据库升级方案。
免费体验!高效实现自建 MySQL 数据库平滑迁移至 PolarDB-X
|
3月前
|
存储 关系型数据库 分布式数据库
喜报|阿里云PolarDB数据库(分布式版)荣获国内首台(套)产品奖项
阿里云PolarDB数据库管理软件(分布式版)荣获「2024年度国内首版次软件」称号,并跻身《2024年度浙江省首台(套)推广应用典型案例》。
|
4月前
|
关系型数据库 分布式数据库 数据库
再获殊荣,阿里云PolarDB数据库蝉联SIGMOD最佳论文奖
内存池化技术新突破,阿里云PolarDB蝉联SIGMOD最佳论文奖

热门文章

最新文章