Python进行多输出(多因变量)回归:集成学习梯度提升决策树GRADIENT BOOSTING,GBR回归训练和预测可视化

简介: Python进行多输出(多因变量)回归:集成学习梯度提升决策树GRADIENT BOOSTING,GBR回归训练和预测可视化

在之前的文章中,我们研究了许多使用 多输出回归分析的方法。在本教程中,我们将学习如何使用梯度提升决策树GRADIENT BOOSTING REGRESSOR拟合和预测多输出回归数据。对于给定的 x 输入数据,多输出数据包含多个目标标签。本教程涵盖:

  • 准备数据
  • 定义模型
  • 预测和可视化结果


我们将从加载本教程所需的库开始。

准备数据

首先,我们将为本教程创建一个多输出数据集。它是随机生成的数据,具有以下一些规则。该数据集中有三个输入和两个输出。我们将绘制生成的数据以直观地检查它。

f = plt.figure()
f.add_subplot(1,2,1)
plt.title("Xs 输入数据")
plt.plot(X)

接下来,我们将数据集拆分为训练和测试部分并检查数据形状。

print("xtrain:", xtrain.shape, "ytrian:", ytrain.shape)





定义模型

我们将定义模型。作为估计,我们将使用默认参数实现。可以通过 print 命令查看模型的参数。

model = MutRer(es=gbr)
print(model )

现在,我们可以用训练数据拟合模型并检查训练结果。

fit(xtrain, ytrain)
score(xtrain, ytrain)

预测和可视化结果

我们将使用经过训练的模型预测测试数据,并检查 y1 和 y2 输出的 MSE 率。

predict

最后,我们将在图中可视化结果并直观地检查它们。

xax = range(len)
plt.plot
plt.legend

在本教程中,我们简要学习了如何在 Python 中训练了多输出数据集和预测的测试数据。

相关文章
|
2月前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
565 7
|
3月前
|
机器学习/深度学习 算法 Python
随机森林算法是一种强大的集成学习方法,通过构建多个决策树并综合其结果进行预测。
随机森林算法是一种强大的集成学习方法,通过构建多个决策树并综合其结果进行预测。本文详细介绍了随机森林的工作原理、性能优势、影响因素及调优方法,并提供了Python实现示例。适用于分类、回归及特征选择等多种应用场景。
117 7
|
3月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
146 5
|
3月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
3月前
|
数据可视化 搜索推荐 Shell
Python与Plotly:B站每周必看榜单的可视化解决方案
Python与Plotly:B站每周必看榜单的可视化解决方案
|
3月前
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力
|
3月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
4月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据处理与可视化——以气温数据分析为例
【10月更文挑战第12天】使用Python进行数据处理与可视化——以气温数据分析为例
490 0
|
4月前
|
Java Maven Docker
gitlab-ci 集成 k3s 部署spring boot 应用
gitlab-ci 集成 k3s 部署spring boot 应用
|
3月前
|
消息中间件 监控 Java
您是否已集成 Spring Boot 与 ActiveMQ?
您是否已集成 Spring Boot 与 ActiveMQ?
79 0

热门文章

最新文章

推荐镜像

更多