R语言对S&P500股票指数进行ARIMA + GARCH交易策略

简介: R语言对S&P500股票指数进行ARIMA + GARCH交易策略

在本文中,我想向您展示如何应用S&P500股票市场指数的交易策略。

通过组合ARIMA和GARCH模型,从长期来看,我们可以超过“买入并持有”方法。

策略概述

该策略在“滚动”预测的基础上执行:

  1. 对于每一天,股票指数的对数收益的前_k_天被用作拟合最佳ARIMA和GARCH模型的窗口。
  2. 组合模型用于对第二天的收益进行预测。
  3. 如果预测为负,则在上一个收盘时做空股票,而如果预测为正,则做多。
  4. 如果预测与前一天的方向相同,则什么都不会改变。

策略实施

第一个任务是在R中安装和导入必要的库:

如果已经安装了库,则可以简单地导入它们:

> library(quantmod)
> library(lattice)
> library(timeSeries)
> library(rugarch)

完成后,将把该策略应用于S&P500。

然后,我们可以创建标准普尔500的“收盘价”的对数收益率差分序列,并去除初始NA值:

根据Akaike信息准则,循环过程将为我们提供“最佳”拟合ARMA模型,然后我们可以将其用于输入GARCH模型:

>     final.aic <- Inf
>     final.order <- c(0,0,0)
>     for (p in 0:5) for (q in 0:5) {
>         if ( p == 0 && q == 0) {
>             next
>         }
> 
>         arimaFit = tryCatch( arima(spReturnsOffset, order=c(p, 0, q)),
>                              error=function( err ) FALSE,
>                              warning=function( err ) FALSE )
> 
>         if( !is.logical( arimaFit ) ) {
>             current.aic <- AIC(arimaFit)
>             if (current.aic < final.aic) {
>                 final.aic <- current.aic
>                 final.order <- c(p, 0, q)
>                 final.arima <- arima(spReturnsOffset, order=final.order)
>             }
>         } else {
>             next
>         }
>     }


如果GARCH模型无法收敛,那么我们只需将日期设置为产生“长期”预测 。

为了准备CSV文件的输出,我创建了一个字符串,其中包含用逗号分隔的数据,并带有第二天的预测方向:

>     if(is(fit, "warning")) {
>       forecasts[d+1] = paste(index(spReturnsOffset[windowLength]), 1, sep=",")
>       print(paste(index(spReturnsOffset[windowLength]), 1, sep=","))
>     } else {
>       fore = ugarchforecast(fit, n.ahead=1)
>       ind = fore@forecast$seriesFor
>       forecasts[d+1] = paste(colnames(ind), ifelse(ind[1] < 0, -1, 1), sep=",")
>       print(paste(colnames(ind), ifelse(ind[1] < 0, -1, 1), sep=",")) 
>     }
> }


倒数第二步是将CSV文件输出 。

确保在与forecasts.csv文件相同的目录中运行:

forecasts = open("forecasts.csv", "r").readlines()


至此,我们已将更正的指标文件存储在中forecasts_new.csv

策略结果

现在,我们已经生成了指标CSV文件,我们需要将其效果与“买入并持有”进行比较。

我们首先从CSV文件中读取指标并将其存储为spArimaGarch

然后,我们将ARIMA + GARCH预测的日期与S&P500的原始收益集相交。

一旦获得ARIMA + GARCH策略的收益,就可以为ARIMA + GARCH模型和“买入并持有”创建资产曲线。最后,我们将它们合并为一个数据结构:

> spArimaGarchCurve = log( cumprod( 1 + spArimaGarchReturns ) )
> spBuyHoldCurve = log( cumprod( 1 + spIntersect[,2] ) )
> spCombinedCurve = merge( spArimaGarchCurve, spBuyHoldCurve, all=F )


最后,我们可以在同一图上绘制两条收益曲线:

> xyplot( 
>   spCombinedCurve,
>   superpose=T,
>   col=c("darkred", "darkblue"),
>   lwd=2,
>   key=list( 
>     text=list(
>       c("ARIMA+GARCH", "Buy & Hold")
>     ),
>     lines=list(
>       lwd=2, col=c("darkred", "darkblue")
>     )
>   )
> )


资产曲线如下:


01

02

03

04


ARIMA + GARCH策略的股票曲线与S&P500的“买入并持有”

如您所见,在65年的时间里,ARIMA + GARCH策略的表现明显优于“买入并持有”。但是,您还可以看到,大部分收益发生在1970年至1980年之间。

因此,在将此类模型建立之前将其应用于历史序列真的合适吗?另一种选择是开始将模型应用于最新数据。实际上,我们可以考虑一下从2005年1月1日至今的最近十年的表现:

从2005年至今,ARIMA + GARCH策略与S&P500的“买入并持有”股票曲线

现在,我们已经完成了ARIMA和GARCH模型的讨论,我想通过考虑长状态空间模型和协整时间序列来继续进行时间序列分析讨论。

时间序列的这些后续领域将向我们介绍一些模型,这些模型可以改善我们的预测,这将大大提高我们的交易获利能力和/或降低风险。

相关文章
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
4月前
|
数据采集 机器学习/深度学习 数据挖掘
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
|
7月前
|
数据可视化
【R语言实战】——金融时序ARIMA建模
【R语言实战】——金融时序ARIMA建模
|
7月前
|
数据可视化
R语言汇率、股价指数与GARCH模型分析:格兰杰因果检验、脉冲响应与预测可视化
R语言汇率、股价指数与GARCH模型分析:格兰杰因果检验、脉冲响应与预测可视化
|
7月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言神经网络模型金融应用预测上证指数时间序列可视化
R语言神经网络模型金融应用预测上证指数时间序列可视化
|
7月前
|
存储 数据可视化
R语言软件套保期限GARCH、VAR、OLS回归模型对沪深300金融数据可视化分析
R语言软件套保期限GARCH、VAR、OLS回归模型对沪深300金融数据可视化分析
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
53 3
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化