Python金融时间序列模型ARIMA 和GARCH 在股票市场预测应用

简介: Python金融时间序列模型ARIMA 和GARCH 在股票市场预测应用

这篇文章讨论了自回归综合移动平均模型 (ARIMA) 和自回归条件异方差模型 (GARCH) 及其在股票市场预测中的应用。

介绍

一个 ARMA (AutoRegressive-Moving Average)") 有两部分,AR(p)部分和MA(q)部分,表示如下

其中 L 是滞后算子,ϵi 是白噪声。它可以通过 Box-Jenkins method. 我们可能会使用 PACF 绘制识别 AR 滞后阶数 p,和 ACF 图以识别 MA 滞后阶数 q;或使用信息,例如 AIC 和 BIC 做模型选择。

ARIMA (AutoRegressive Integrated Moving Average)") 是 ARMA 的拓展,通过为非平稳过程添加阶数为 d 的积分部分。

ARIMA是针对价格水平或收益率的,而GARCH(广义自回归条件异方差)则试图对波动率或收益率平方的聚类进行建模。它将ARMA项扩展到方差方面。

作为随机波动率模型的离散版本,GARCH也能捕捉到股票市场的厚尾效应。因此,将ARIMA和GARCH结合起来,预计在模拟股票价格时比单独一个模型更适合。在这篇文章中,我们将把它们应用于标普500指数的价格。

ARIMA

首先,众所周知,股票价格不是平稳的;而收益可能是平稳的。ADF单位根检验结果。

# 价格是已知的非平稳的;收益是平稳的
import adfuller
rsut = aduler(close)
prnt(f'ADF Satitic: {reslt
}, pale: {rslt1\]}')  # null 假设:单位根存在;不能拒绝 null。
relt = adfler(histet)
prnt(f'ADF Statistic: {reut\[0\]}, pvaue: {rslt\[1\]}')   # 拒绝单位根的空假设 ==> 平稳

收益序列的 ADF p 值为 0,拒绝单位根的原假设。因此,我们在 ARIMA(p, d, q) 中接受 d=1,下一步是识别滞后 p 和 q。ACF 和 PACF 图表明滞后最多 35 个工作日。如果我们按照图表进行拟合,将有太多参数无法拟合。一种解决方案是使用每周或每月图表。在这里,我们将最大滞后时间限制为 5 天,并使用 AIC 选择最佳模型。

for p in rage(6):
    for q in rage(6):
        ry:
            mft = fit(disp=0)
            ic(p,q)
(p, q) = fiaic
        except:
            pass

下一步是拟合模型并通过残差统计评估模型拟合。残差仍然显示出一些自相关,并且没有通过正态性检验。由于滞后阶数限制,这在某种程度上是预料之中的。

尽管如此,让我们继续最后一步并使用模型进行预测。下面比较了对测试集的收益率预测和实际收益率。

收益率预测以 0% 为中心,置信区间在 ±2% 之间。结果并不是特别令人印象深刻。毕竟,市场正在经历一个动荡的阶段,在预测时间窗口内甚至下跌了 6%。



点击标题查阅往期内容


R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列



左右滑动查看更多



01

02

03

04




GARCH

让我们看看加入GARCH效果是否会产生更好的结果。建模过程类似于ARIMA:首先识别滞后阶数;然后拟合模型并评估残差,最后如果模型令人满意,就用它来预测。

我们将 AR 滞后和 GARCH 滞后都限制为小于 5。结果最优阶为 (4,2,2)。

for l in rage(5):
    for p in rage(1, 5):
        for q in rage(1, 5):
            try:
                mdl = arch(is_et, man='ARX',  vol='Garch', p=p, o=0, q=q, dist='Nomal')
                fit(last_obs=spldat)
                dc_ic(l,p,q)
(l, p, q) =aic
            except:
                pass

接下来让我们根据选择的最佳参数来拟合模型,如下所示。证实了均值模型是AR(4),方差模型是GARCH(2, 2)。一些系数在统计上不显着。

最后但并非最不重要的是,预测区间从±4%下降到±3%,然后又反弹到±5%,这清楚地表明了模型的波动性集群。请注意,这里是单步滚动预测,应该比静态的多期预测要好。

趋势平稳和差分平稳

趋势平稳,即确定性趋势,具有确定性均值趋势。相反,差分平稳具有随机趋势。前者可以用OLS估计,后者需要先求差分。

考虑一个简单的过程

如果 φ<1,则过程是趋势平稳的;也就是说,如果我们减去趋势 at,则过程变得平稳。若φ=1,则差分平稳。将第二个方程代入第一个方程很容易看出随机性,并将方程改写为


相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
机械视觉:原理、应用及Python代码示例
机械视觉:原理、应用及Python代码示例
|
3天前
|
机器学习/深度学习 运维 Python
python深度学习实现自编码器Autoencoder神经网络异常检测心电图ECG时间序列
python深度学习实现自编码器Autoencoder神经网络异常检测心电图ECG时间序列
12 0
|
1天前
|
数据采集 机器学习/深度学习 供应链
python基于评论情感分析和回归、arima销量预测的购物网站选品
python基于评论情感分析和回归、arima销量预测的购物网站选品
|
1天前
|
机器学习/深度学习 算法 定位技术
Python用Lstm神经网络、离散小波转换DWT降噪对中压电网电压时间序列预测
Python用Lstm神经网络、离散小波转换DWT降噪对中压电网电压时间序列预测
|
3天前
|
Python
python实现股票策略回测案例
此Python代码演示了一个简单的股票策略回测,使用yfinance库获取AAPL股票2020年至2022年的数据。它计算每日收益率,并基于前一日收益率决定买卖:正则买入,负则卖出。通过模拟交易更新现金和股票余额,最终计算总收益。请注意,此示例未涵盖交易费用、滑点、风险管理等实际交易因素。
12 0
|
3天前
|
Python
python实现股票均线策略案例
此Python代码示例展示了如何运用均线策略进行股票交易模拟。它下载AAPL的股票历史数据,计算每日收益率,设置短期和长期移动平均线。当短期均线超过长期均线时,模拟买入;反之则卖出。代码遍历每一天,更新现金和股票余额,并最终计算总收益。请注意,实际交易需考虑更多因素如交易费用和风险管理。
14 2
|
3天前
|
机器学习/深度学习 算法 算法框架/工具
PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
|
4天前
|
vr&ar Python
Python ARIMA时间序列模型预测航空公司的乘客数量
Python ARIMA时间序列模型预测航空公司的乘客数量
17 0
|
5天前
|
机器学习/深度学习 数据采集 算法
Python信贷风控模型:Adaboost,XGBoost,SGD, SVC,随机森林, KNN预测信贷违约支付|数据分享
Python信贷风控模型:Adaboost,XGBoost,SGD, SVC,随机森林, KNN预测信贷违约支付|数据分享
10 1
Python信贷风控模型:Adaboost,XGBoost,SGD, SVC,随机森林, KNN预测信贷违约支付|数据分享
|
5天前
|
数据采集 机器学习/深度学习 搜索推荐
使用Python实现推荐系统模型
使用Python实现推荐系统模型
16 1