R语言时间序列分解和异常检测方法应用案例

简介: R语言时间序列分解和异常检测方法应用案例

我们最近有一个很棒的机会与一位客户合作,要求构建一个适合他们需求的异常检测算法。业务目标是准确地检测各种营销数据的异常情况,这些数据包括跨多个客户和Web源数千个时间序列的网站操作和营销反馈。异常检测算法,该算法基于时间并可从一个到多个时间序列进行扩展。

案例研究

我们与许多教授数据科学的客户合作,并利用我们的专业知识加速业务发展。

我们的客户遇到了一个具有挑战性的问题:按时间顺序检测每日或每周数据的时间序列异常。异常表示异常事件,可能是营销域中的Web流量增加或IT域中的故障服务器。无论如何,标记这些不寻常的事件确保业务顺利运行非常重要。其中一个挑战是客户处理的不是一个时间序列,而是需要针对这些极端事件进行分析

anomalize

这里有四个简单步骤的工作要点。

第1步:安装
install.packages("tidyverse")
第2步:加载
library(tidyverse)
第3步:收集时间序列数据
tidyverse\_cran\_downloads
## # A tibble: 6,375 x 3
## # Groups: package \[15\]
## date count package
##
## 1 2017-01-01 873. tidyr
## 2 2017-01-02 1840. tidyr
## 3 2017-01-03 2495. tidyr
## 4 2017-01-04 2906. tidyr
## 5 2017-01-05 2847. tidyr
## 6 2017-01-06 2756. tidyr
## 7 2017-01-07 1439. tidyr
## 8 2017-01-08 1556. tidyr
## 9 2017-01-09 3678. tidyr
## 10 2017-01-10 7086. tidyr
## # ... with 6,365 more rows
第4步:异常化
使用功能及时发现异常情况。

异常检测工作流程

其中包括:

  • 用时间序列分解
  • 用检测异常
  • 异常下限和上限转换

时间序列分解

第一步是使用时间序列分解。“计数”列被分解为“观察”,“季节”,“趋势”和“剩余”列。时间序列分解的默认值是method = "stl",使用平滑器进行季节性分解。

## # A time tibble: 6,375 x 6
## # Index: date
## # Groups: package \[15\]
## package date observed season trend remainder
##
## 1 tidyr 2017-01-01 873. -2761. 5053. -1418.
## 2 tidyr 2017-01-02 1840. 901. 5047. -4108.
## 3 tidyr 2017-01-03 2495. 1460. 5041. -4006.
## 4 tidyr 2017-01-04 2906. 1430. 5035. -3559.
## 5 tidyr 2017-01-05 2847. 1239. 5029. -3421.
## 6 tidyr 2017-01-06 2756. 367. 5024. -2635.
## 7 tidyr 2017-01-07 1439. -2635. 5018. -944.
## 8 tidyr 2017-01-08 1556. -2761. 5012. -695.
## 9 tidyr 2017-01-09 3678. 901. 5006. -2229.
## 10 tidyr 2017-01-10 7086. 1460. 5000. 626.
## # ... with 6,365 more rows

frequency并trend自动为您选择。此外,可以通过输入基于时间的周期(例如“1周”或“2个季度”)来更改选择,可以确定有多少观察属于时间跨度。

异常检测

下一步是对分解的数据执行异常检测。产生了三个新列:“remainder\_l1”(下限),“remainder\_l2”(上限)和“异常”(是/否标志)。默认方法是method = "iqr",在检测异常时快速且相对准确。

## # Groups: package \[15\]
## package date observed season trend remainder remainder_l1
##
## 1 tidyr 2017-01-01 873. -2761. 5053. -1418. -3748.
## 2 tidyr 2017-01-02 1840. 901. 5047. -4108. -3748.
## 3 tidyr 2017-01-03 2495. 1460. 5041. -4006. -3748.
## 4 tidyr 2017-01-04 2906. 1430. 5035. -3559. -3748.
## 5 tidyr 2017-01-05 2847. 1239. 5029. -3421. -3748.
## 6 tidyr 2017-01-06 2756. 367. 5024. -2635. -3748.
## 7 tidyr 2017-01-07 1439. -2635. 5018. -944. -3748.
## 8 tidyr 2017-01-08 1556. -2761. 5012. -695. -3748.
## 9 tidyr 2017-01-09 3678. 901. 5006. -2229. -3748.
## 10 tidyr 2017-01-10 7086. 1460. 5000. 626. -3748.
## # ... with 6,365 more rows, and 2 more variables: remainder_l2 ,
## # anomaly

现在尝试另一个绘图功能。它只适用于单个时间序列。“季节”消除每周的季节性。趋势是平滑的。最后,检测最重要的异常值。

tidyverse\_cran\_downloads %>%
time_decompose(count, method = "stl", frequency = "auto", trend = "auto") %>%
anomalize(remainder, method = "iqr", alpha = 0.05, max_anoms = 0.2) %>%
plot\_anomaly\_decomposition() +

异常下限和上限

最后一步是围绕“观察”值创建下限和上限。创建了两个新列:“recomposed\_l1”(下限)和“recomposed\_l2”(上限)。

## # A time tibble: 6,375 x 11
## # Index: date
## # Groups: package \[15\]
## package date observed season trend remainder remainder_l1
##
## 1 tidyr 2017-01-01 873. -2761. 5053. -1418. -3748.
## 2 tidyr 2017-01-02 1840. 901. 5047. -4108. -3748.
## 3 tidyr 2017-01-03 2495. 1460. 5041. -4006. -3748.
## 4 tidyr 2017-01-04 2906. 1430. 5035. -3559. -3748.
## 5 tidyr 2017-01-05 2847. 1239. 5029. -3421. -3748.
## 6 tidyr 2017-01-06 2756. 367. 5024. -2635. -3748.
## 7 tidyr 2017-01-07 1439. -2635. 5018. -944. -3748.
## 8 tidyr 2017-01-08 1556. -2761. 5012. -695. -3748.
## 9 tidyr 2017-01-09 3678. 901. 5006. -2229. -3748.
## 10 tidyr 2017-01-10 7086. 1460. 5000. 626. -3748.
## # ... with 6,365 more rows, and 4 more variables: remainder_l2 ,
## # anomaly , recomposed\_l1 , recomposed\_l2

让我们看一下“lubridate”数据。我们可以plot\_anomalies()和设置time\_recomposed = TRUE。此功能适用于单个和分组数据。

time_decompose(count, method = "stl", frequency = "auto", trend = "auto") %>%
anomalize(remainder, method = "iqr", alpha = 0.05, max_anoms = 0.2) %>%
time_recompose() %>%
# 绘制异常分解
plot\_anomalies(time\_recomposed = TRUE) +
ggtitle("Lubridate Downloads: Anomalies Detected")

预测

forecast是在执行预测之前有效收集异常值的好方法。它使用基于STL的离群值检测方法。它非常快,因为最多有两次迭代来确定异常值带。

结论

R软件非常有效地用于检测异常的许多传统预测时间序列。但是,速度是一个问题,特别是在尝试扩展到多个时间序列时。

我们从中了解到所有软件包的最佳组合:

  • 分解方法:我们包括两个时间序列分解方法:( "stl"使用Loess的传统季节分解)和"twitter"(使用中间跨度的季节分解)。
  • 异常检测方法:我们包括两种异常检测方法:( "iqr"使用类似于3X IQR的方法forecast::tsoutliers())和"gesd"(使用Twitter使用的GESD方法AnomalyDetection)。

有问题欢迎下方留言!

相关文章
|
1天前
|
机器学习/深度学习 Python
【视频】ARIMA时间序列模型原理和R语言ARIMAX预测实现案例
【视频】ARIMA时间序列模型原理和R语言ARIMAX预测实现案例
|
1天前
|
数据可视化
数据分享|R语言Copula对债券的流动性风险时间序列数据进行度量
数据分享|R语言Copula对债券的流动性风险时间序列数据进行度量
|
1天前
|
数据采集 人工智能 算法
R语言ARMA-GARCH模型金融产品价格实证分析黄金价格时间序列
R语言ARMA-GARCH模型金融产品价格实证分析黄金价格时间序列
|
1天前
|
机器学习/深度学习 数据可视化 算法
数据分享|R语言交互可视化分析Zillow房屋市场:arima、VAR时间序列、XGBoost、主成分分析、LASSO报告
数据分享|R语言交互可视化分析Zillow房屋市场:arima、VAR时间序列、XGBoost、主成分分析、LASSO报告
|
1天前
|
vr&ar Python
数据分享|R语言ARIMA模型分析预测上海空气质量指数AQI时间序列
数据分享|R语言ARIMA模型分析预测上海空气质量指数AQI时间序列
|
1天前
|
机器学习/深度学习 数据可视化 Python
R语言神经网络模型预测多元时间序列数据可视化
R语言神经网络模型预测多元时间序列数据可视化
|
1天前
R语言单位根、协整关系Granger因果检验、RESET分析汇率在岸和离岸数据时间序列
R语言单位根、协整关系Granger因果检验、RESET分析汇率在岸和离岸数据时间序列
|
1天前
|
算法 数据可视化 数据挖掘
R语言指数平滑预测法分析南京出租车打车软件空载率时间序列补贴政策可行性
R语言指数平滑预测法分析南京出租车打车软件空载率时间序列补贴政策可行性
|
2天前
|
算法 Python
R语言随机波动模型SV:马尔可夫蒙特卡罗法MCMC、正则化广义矩估计和准最大似然估计上证指数收益时间序列
R语言随机波动模型SV:马尔可夫蒙特卡罗法MCMC、正则化广义矩估计和准最大似然估计上证指数收益时间序列
15 7
|
2天前
|
机器学习/深度学习 数据可视化 算法
R语言独立成分分析fastICA、谱聚类、支持向量回归SVR模型预测商店销量时间序列可视化
R语言独立成分分析fastICA、谱聚类、支持向量回归SVR模型预测商店销量时间序列可视化

热门文章

最新文章