R语言用HESSIAN-FREE 、NELDER-MEAD优化方法对数据进行参数估计

简介: R语言用HESSIAN-FREE 、NELDER-MEAD优化方法对数据进行参数估计

主要优化方法的快速概述

我们介绍主要的优化方法。我们考虑以下问题 .

无导数优化方法

Nelder-Mead方法是最著名的无导数方法之一,它只使用f的值来搜索最小值。过程:

  1. 设置初始点x1,...,xn+1
  2. 对点进行排序,使得f(x1)≤f(x2)≤⋯≤f(xn+1)。
  3. 计算xo作为x1,...,xn的中心点。
  4. 反射
  • 计算反射点xr=xo+α(xo-xn+1)。
  • 如果f(x1)≤f(xr)<f(xn),那么用xr替换xn+1,转到步骤2。
  • 否则转到第5步。

扩展:

  • 如果f(xr)<f(x1),那么计算扩展点xe=xo+γ(xo−xn+1).
  • 如果f(xe)<f(xr),那么用xe替换xn+1,转到步骤2。
  • 否则用xr替换xn+1,转到第2步。
  • 否则转到第6步。

收缩:

  • 计算收缩点xc=xo+β(xo-xn+1).
  • 如果f(xc)<f(xn+1),那么用xc替换xn+1,进入第2步。
  • 否则转到第7步.

减少:

  • 对于i=2,...,n+1,计算xi=x1+σ(xi-x1).

Nelder-Mead方法在optim中可用。默认情况下,在optim中,α=1,β=1/2,γ=2,σ=1/2。

Hessian-free 优化方法

对于光滑的非线性函数,一般采用以下方法:局部方法结合直线搜索工作的方案xk+1=xk+tkdk,其中局部方法将指定方向dk,直线搜索将指定步长tk∈R。

基准

为了简化优化方法的基准,我们创建一个函数,用于计算所有优化方法的理想估计方法。

benchfit <- function(data, distr, ...)

β分布的数值说明

β分布的对数似然函数及其梯度

理论值

β分布的密度由以下公式给出

其中β表示β函数。我们记得β(a,b)=Γ(a)Γ(b)/Γ(a+b)。在这里,一组观测值(x1,...,xn)的对数似然性为

与a和b有关的梯度为

R实现

我们最小化了对数似然的相反_数_:实现了梯度的相反_数_。对数似然和它的梯度都不被输出。

function(par) 
loglikelihood(par, fix.arg ,...)

样本的随机生成

#(1) beta分布
n <- 200
x <- rbeta(n, 3, 3/4)
lnl(c(3, 4), x) #检验
``````
hist(x, prob=TRUE)

拟合Beta分布

定义控制参数。

list(REPORT=1, maxit=1000)

用默认的优化函数调用,对于不同的优化方法,有梯度和无梯度。

fit(x, "beta", "mle", lower=0,...)

在约束优化的情况下,我们通过使用对数障碍允许线性不平等约束。

使用形状参数δ1和δ2的exp/log变换,来确保形状参数严格为正。

#取起始值的对数
lapply(default(x, "beta"), log)
#为新的参数化重新定义梯度
exp <- function(par,...) beta(exp(par), obs) * exp(par)
fit(x, distr="beta2", method="mle")

#返回到原始参数化
expopt <- exp(expopt)

然后,我们提取拟合参数的值、相应的对数似然值和要最小化的函数的计数及其梯度(无论是理论上的梯度还是数值上的近似值)。

数值调查的结果

结果显示在以下表格中。1)没有指定梯度的原始参数(-B代表有界版本),(2)具有(真实)梯度的原始参数(-B代表有界版本,-G代表梯度),(3)没有指定梯度的对数转换参数,(4)具有(真实)梯度的对数转换参数(-G代表梯度)。

我们绘制了真实值(蓝色)和拟合参数(红色)周围的对数似然曲面图。

llsurface(min.arg=c(0.1, 0.1), max.arg=c(7, 3), 
          plot.arg=c("shape1", "shape2"), nlev=25,
          plot.np=50, data=x, distr="beta", back.col = FALSE)
points(unconstropt\[1,"BFGS"\], unconstropt\[2,"BFGS"\], pch="+", col="red")
points(3, 3/4, pch="x", col="green")

我们可以用bootdist函数来模拟bootstrap 复制的情况。

boot(fit(x, "beta", method="mle", optim.method="BFGS"))

plot(b1)
abline(v=3, h=3/4, col="red", lwd=1.5)

负二项分布的演示

负二项分布的对数似然函数及其梯度

理论值

负二项分布的p.m.f.由以下公式给出

其中Γ表示β函数。存在另一种表示方法,即μ=m(1-p)/p或等价于p=m/(m+μ)。因此,一组观测值(x1,...,xn)的对数似然性是

相对于m和p的梯度是

R实现

我们最小化对数似然性的相反_数_:实现梯度的相反_数_。

m <- x\[1\]
  p <- x\[2\]
  c(sum(psigamma(obs+m)) - n\*psigamma(m) + n\*log(p),
    m*n/p - sum(obs)/(1-p))

样本的随机生成

#(1) β分布
trueval <- c("size"=10, "prob"=3/4, "mu"=10/3)
x <- rnbinom(n, trueval\["size"\], trueval\["prob"\])
hist(x, prob=TRUE, ylim=c(0, .3))

拟合负二项分布

定义控制参数并做基准。

list(trace=0, REPORT=1, maxit=1000)
fit(x, "nbinom", "mle", lower=0)

在约束优化的情况下,我们通过使用对数障碍允许线性不平等约束。

使用形状参数δ1和δ2的exp/log变换,来确保形状参数严格为正。

#对起始值进行变换
mu <- size / (size+mu)
arg <- list(size=log(start), prob=log(start/(1-start)))
#为新的参数化重新定义梯度
function(x)
  c(exp(x\[1\]), plogis(x\[2\]))
fit(x, distr="nbinom2", method="mle")

#返回到原始参数化
expo <- apply(expo, 2, Trans)

然后,我们提取拟合参数的值、相应的对数似然值和要最小化的函数的计数及其梯度(无论是理论上的梯度还是数值上的近似值)。

数值调查的结果

结果显示在以下表格中。1)没有指定梯度的原始参数(-B代表有界版本),(2)具有(真实)梯度的原始参数(-B代表有界版本,-G代表梯度),(3)没有指定梯度的对数转换参数,(4)具有(真实)梯度的对数转换参数(-G代表梯度)。

我们绘制了真实值(蓝色)和拟合参数(红色)周围的对数似然曲面图。

surface(min.arg=c(5, 0.3), max.arg=c(15, 1), 
         )
points(trueval , pch="x")

我们可以用bootdist函数来模拟bootstrap 复制的情况。

boot(fit(x, "nbinom", method="mle")

plot(b1)
abline(v=trueval)

结论

基于前面的两个例子,我们观察到所有的方法都收敛到了同一个点。

然而,不同方法的函数评价(和梯度评价)的结果是非常不同的。此外,指定对数似然性的真实梯度对拟合过程没有任何帮助,通常会减慢收敛速度。一般来说,最好的方法是标准BFGS方法或对参数进行指数变换的BFGS方法。由于指数函数是可微的,所以渐进特性仍被保留(通过Delta方法),但对于有限样本来说,这可能会产生一个小的偏差。


最受欢迎的见解

相关文章
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
4月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
4月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
5月前
|
数据采集 机器学习/深度学习 数据挖掘
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
|
5月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
66 3
|
8月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
8月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
5月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。