R语言法国足球联赛球员多重对应分析(MCA)

简介: R语言法国足球联赛球员多重对应分析(MCA)

数据集

 

fooball球员在场上的位置

数据来自国际足联的视频游戏FIFA 。游戏的特点是在游戏的各个方面评价每个球员的能力。等级是量化变量(介于0和100之间),但我们将它们转换为分类变量。所有能力都被编码在4个等级:1.低/ 2.平均/ 3.高/ 4.非常高。

加载和准备数据

首先将数据集加载到data.frame中。

第二行也将整数列转换为因子。

数据分析

我们的数据集包含分类变量。适当的数据分析方法是多重对应分析。

产生了三个图:类别和球员在坐标轴上的投影,以及变量的图形。

 

这里显然有两个球员集群。

解释

显然,我们必须先将分析减少到一定数量的维度。选择变量数量的方法是肘法。我们绘制特征值的图形:


> barplot(mca_no_gk $ eig $ eigenvalue)

特征值图

围绕第三或第四个特征值,我们观察到一个值的下降(这是MCA解释的方差的百分比)。因此,我们选择将我们的分析减少到前三个因子


> plot.MCA(mca_no_gk  )

在前两个因子坐标轴上投影

我们可以通过在图表上读取最有代表性的变量名称来开始分析。

第一因子的最有代表性的能力是:在轴的右侧攻击能力 的能力较弱,左边的能力非常强。因此,我们的解释是,因子1根据他们的进攻能力(左侧更好的攻击能力,右侧更弱)来区分球员。我们对第2因子进行同样的分析,并得出结论:根据他们的防守能力来区分球员:在顶部会发现更好的防守者,而在底部会发现弱防守者。

补充变量也可以帮助确认我们的解释,特别是位置变量:


> plot.MCA(mca_no_gk,invisible = c(“ind”,“var”))

在前两个维度上投影补充变量

实际上,我们在图的左边部分发现了攻击位置(LW,ST,RW),并在图顶部看到了防守位置(CB,LB,RB)。

如果我们的解释是正确的,那么图表中第二个维度上的投影就可以代表球员的整体水平。最强的球员将会在左上角找到,而较弱的将会在右下角找到。“overall_4”位于左上角,“overall_1”位于右下角。此外,在补充变量的图表中,我们观察到“法甲联赛第一”(Ligue 1)位于左上方,而“Ligue 2”位于右下方。



> plot.MCA(mca_no_gk,invisible = c(“ind”,“var”),axes = c(2,3))

 

在第二和第三维度上投影变量

最具代表性的第三维度是技术上的弱点:技术能力较低的球员(运球,控球等)位于坐标轴的末端,而这些能力中成绩最高的球员往往被发现在坐标轴的中心:

在第二和第三因子坐标轴上投影补充变量

在补充变量的帮助下,中场平均拥有最高的技术能力,而前锋(ST)和后卫(CB,LB,RB)似乎一般都不以球控技术着称。

参考Mathieu Valbuena在坐标轴1和坐标轴2上生成的图形:

1和2因子坐标轴补充变量

第2和3因子坐标轴

所以,马蒂厄·瓦尔布纳似乎有很好的进攻技巧,但他也有很好的整体水平(他在第二因子上的投射比较高)。他也位于第三坐标轴的中心,这表示他具有良好的技术能力。因此,最适合他的位置(统计上)是中场位置(CAM,LM,RM)。再加上几行代码,我们可以找到法国联赛中最相似的球员:

我们得到:Ladislas Douniama,FrédéricSammaritano,Florian Thauvin,N'GoloKanté和Wissam Ben Yedder。


相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
5天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
21 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
63 3
|
6月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
|
6月前
|
Web App开发 数据可视化 数据挖掘
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)

热门文章

最新文章