yolo-world 源码解析(四)(1)

简介: yolo-world 源码解析(四)

Preparing Data for YOLO-World

Overview

For pre-training YOLO-World, we adopt several datasets as listed in the below table:

Data Samples Type Boxes
Objects365v1 609k detection 9,621k
GQA 621k grounding 3,681k
Flickr 149k grounding 641k
CC3M-Lite 245k image-text 821k

Dataset Directory

We put all data into the data directory, such as:

├── coco
│   ├── annotations
│   ├── lvis
│   ├── train2017
│   ├── val2017
├── flickr
│   ├── annotations
│   └── images
├── mixed_grounding
│   ├── annotations
│   ├── images
├── mixed_grounding
│   ├── annotations
│   ├── images
├── objects365v1
│   ├── annotations
│   ├── train
│   ├── val

NOTE: We strongly suggest that you check the directories or paths in the dataset part of the config file, especially for the values ann_file, data_root, and data_prefix.

We provide the annotations of the pre-training data in the below table:

Acknowledgement: We sincerely thank GLIP and mdetr for providing the annotation files for pre-training.

Dataset Class

For training YOLO-World, we mainly adopt two kinds of dataset classs:

1. MultiModalDataset

MultiModalDataset is a simple wrapper for pre-defined Dataset Class, such as Objects365 or COCO, which add the texts (category texts) into the dataset instance for formatting input texts.

Text JSON

The json file is formatted as follows:

[
    ['A_1','A_2'],
    ['B'],
    ['C_1', 'C_2', 'C_3'],
    ...
]

We have provided the text json for LVIS, COCO, and Objects365

2. YOLOv5MixedGroundingDataset

The YOLOv5MixedGroundingDataset extends the COCO dataset by supporting loading texts/captions from the json file. It’s desgined for MixedGrounding or Flickr30K with text tokens for each object.

🔥 Custom Datasets

For custom dataset, we suggest the users convert the annotation files according to the usage. Note that, converting the annotations to the standard COCO format is basically required.

  1. Large vocabulary, grounding, referring: you can follow the annotation format as the MixedGrounding dataset, which adds caption and tokens_positive for assigning the text for each object. The texts can be a category or a noun phrases.
  2. Custom vocabulary (fixed): you can adopt the MultiModalDataset wrapper as the Objects365 and create a text json for your custom categories.

Fine-tuning YOLO-World

Fine-tuning YOLO-World is easy and we provide the samples for COCO object detection as a simple guidance.

Fine-tuning Requirements

Fine-tuning YOLO-World is cheap:

  • it does not require 32 GPUs for multi-node distributed training. 8 GPUs or even 1 GPU is enough.
  • it does not require the long schedule, e.g., 300 epochs or 500 epochs for training YOLOv5 or YOLOv8. 80 epochs or fewer is enough considering that we provide the good pre-trained weights.

Data Preparation

The fine-tuning dataset should have the similar format as the that of the pre-training dataset.

We suggest you refer to docs/data for more details about how to build the datasets:

  • if you fine-tune YOLO-World for close-set / custom vocabulary object detection, using MultiModalDataset with a text json is preferred.
  • if you fine-tune YOLO-World for open-vocabulary detection with rich texts or grounding tasks, using MixedGroundingDataset is preferred.

Hyper-parameters and Config

Please refer to the config for fine-tuning YOLO-World-L on COCO for more details.

  1. Basic config file:

If the fine-tuning dataset contains mask annotations:

_base_ = ('../../third_party/mmyolo/configs/yolov8/yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco.py')

If the fine-tuning dataset doesn’t contain mask annotations:

_base_ = ('../../third_party/mmyolo/configs/yolov8/yolov8_l_syncbn_fast_8xb16-500e_coco.py')
  1. Training Schemes:

Reducing the epochs and adjusting the learning rate

max_epochs = 80
base_lr = 2e-4
weight_decay = 0.05
train_batch_size_per_gpu = 16
close_mosaic_epochs=10
train_cfg = dict(
    max_epochs=max_epochs,
    val_interval=5,
    dynamic_intervals=[((max_epochs - close_mosaic_epochs),
                        _base_.val_interval_stage2)])
  1. Datasets:
coco_train_dataset = dict(
    _delete_=True,
    type='MultiModalDataset',
    dataset=dict(
        type='YOLOv5CocoDataset',
        data_root='data/coco',
        ann_file='annotations/instances_train2017.json',
        data_prefix=dict(img='train2017/'),
        filter_cfg=dict(filter_empty_gt=False, min_size=32)),
    class_text_path='data/texts/coco_class_texts.json',
    pipeline=train_pipeline)
Finetuning without RepVL-PAN or Text Encoder 🚀

For further efficiency and simplicity, we can fine-tune an efficient version of YOLO-World without RepVL-PAN and the text encoder.

The efficient version of YOLO-World has the similar architecture or layers with the orignial YOLOv8 but we provide the pre-trained weights on large-scale datasets.

The pre-trained YOLO-World has strong generalization capabilities and is more robust compared to YOLOv8 trained on the COCO dataset.

You can refer to the config for Efficient YOLO-World for more details.

The efficient YOLO-World adopts EfficientCSPLayerWithTwoConv and the text encoder can be removed during inference or exporting models.

model = dict(
    type='YOLOWorldDetector',
    mm_neck=True,
    neck=dict(type='YOLOWorldPAFPN',
              guide_channels=text_channels,
              embed_channels=neck_embed_channels,
              num_heads=neck_num_heads,
              block_cfg=dict(type='EfficientCSPLayerWithTwoConv')))

Launch Fine-tuning!

It’s easy:

./dist_train.sh <path/to/config> <NUM_GPUS> --amp

COCO Fine-tuning

model efficient neck AP AP50 AP75 weights
YOLO-World-S ✖️ 45.7 62.3 49.9 comming
YOLO-World-M ✖️ 50.7 67.2 55.1 comming
YOLO-World-L ✖️ 53.3 70.3 58.1 comming
YOLO-World-S ✔️ 45.9 62.3 50.1 comming
YOLO-World-M ✔️ 51.2 68.1 55.9 comming
YOLO-World-L ✔️ 53.3 70.1 58.2 comming

Update Notes

We provide the details for important updates of YOLO-World in this note.

Model Architecture

[2024-2-29]: YOLO-World-v2:

  1. We remove the I-PoolingAttention: though it improves the performance for zero-shot LVIS evaluation, it affects the inference speeds after exporting YOLO-World to ONNX or TensorRT. Considering the trade-off, we remove the I-PoolingAttention in the newest version.
  2. We replace the L2-Norm in the contrastive head with the BatchNorm. The L2-Norm contains complex operations, such as reduce, which is time-consuming for deployment. However, the BatchNorm can be fused into the convolution, which is much more efficient and also improves the zero-shot performance.

yolo-world 源码解析(四)(2)https://developer.aliyun.com/article/1483876

相关文章
|
8月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
807 29
|
8月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
316 4
|
8月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
8月前
|
移动开发 前端开发 JavaScript
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。
|
8月前
|
存储 前端开发 JavaScript
在线教育网课系统源码开发指南:功能设计与技术实现深度解析
在线教育网课系统是近年来发展迅猛的教育形式的核心载体,具备用户管理、课程管理、教学互动、学习评估等功能。本文从功能和技术两方面解析其源码开发,涵盖前端(HTML5、CSS3、JavaScript等)、后端(Java、Python等)、流媒体及云计算技术,并强调安全性、稳定性和用户体验的重要性。
|
9月前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
2216 1
|
8月前
|
负载均衡 JavaScript 前端开发
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
11月前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
11月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
10月前
|
自然语言处理 数据处理 索引
mindspeed-llm源码解析(一)preprocess_data
mindspeed-llm是昇腾模型套件代码仓,原来叫"modelLink"。这篇文章带大家阅读一下数据处理脚本preprocess_data.py(基于1.0.0分支),数据处理是模型训练的第一步,经常会用到。
307 0

推荐镜像

更多
  • DNS