sas文本挖掘案例:如何使用SAS计算Word Mover的距离

简介: sas文本挖掘案例:如何使用SAS计算Word Mover的距离

Word Mover的距离(WMD)是用于衡量两个文档之间差异的距离度量,它在文本分析中的应用是由华盛顿大学的一个研究小组在2015年引入的。


Word Mover距离的定义

WMD是两个文档之间的距离,作为将所有单词从一个文档移动到另一个文档所需的最小(加权)累积成本。通过解决以下线性程序问题来计算距离。


T ij表示文档d中的单词i在文档d'中移动到单词j的多少;

C(1; j)的表示从文件d中的单词我到文件d '中的单词J‘行进’的费用; 这里的成本是word2vec嵌入空间中的两个词'欧几里德距离;

如果字我出现Ç我在文档d次,我们记


WMD是Word Mover距离度量(EMD)的一个特例,这是一个众所周知的问题。


如何用SAS计算Word Mover的距离?


SAS / OR是解决问题的工具。图1显示了一个带有四个节点和节点之间距离的传输示例,我从这个Earth Mover的距离文档中复制了这些节点。目标是找出从{x1 ,x2}到{y1,y2}的最小流量。现在让我们看看如何使用SAS / OR解决这个运输问题。

节点的权重和节点之间的距离如下。

datax_set;input_node_ $ _sd_;datalines;
x10.74x20.26;datay_set;
input_node_ $ _sd_;
datalines;
y10.23y20.51;
dataarcdata;input_tail_ $ _head_ $ _cost_;datalines;
x1 y1155.7x1 y2252.3x2 y1292.9x2 y2198.2;proc optmodel;
setxNODES;
num w{xNODES};
setyNODES;
num u{yNODES};set<str,str> ARCS;
num arcCost{ARCS}; 
readdatax_setintoxNODES=[_node_]w=_sd_;
readdatay_setintoyNODES=[_node_]u=_sd_;
readdataarcdataintoARCS=[_tail_ _head_]arcCost=_cost_;
varflow{<i,j>inARCS}>=0;
impvar sumY =sum{jinyNODES}u[j];
minobj =(sum{<i,j>inARCS}arcCost[i,j]* flow[i,j])/sumY;
con con_y{jinyNODES}:sum{<i,(j)>inARCS}flow[i,j]= u[j];
con con_x{iinxNODES}:sum{<(i),j>inARCS}flow[i,j]<= w[i];
 solve with lp / algorithm=ns scale=none logfreq=1;
 print flow;
 quit;


图-1运输问题

SAS / OR的解决方案如表-1所示,EMD是目标值:203.26756757。



表-1 EMD用SAS / OR计算

我用SAS / OR表2得到的流量数据显示如下,与上述地球移动器距离文档中公布的图表相同。


表-2 SAS / OR的流量数据


图-2运输问题流程图


如何用SAS计算Word Mover的距离

本文从Word嵌入到文档距离,通过删除WMD的第二个约束来减少计算,提出了一个名为放松的Word Mover距离(RWMD)的新度量。由于我们需要读取文字嵌入数据,因此我将向您展示如何使用SAS Viya计算两个文档的RWMD。

/* start CAS server */cas casauto host="host.example.com"port=5570;libnamesascas1 cas;/* load documents into CAS */datasascas1.documents;infiledatalines delimiter='|'missover;lengthtext varchar(300);inputtext$ did;datalines;Obama speaks to the mediainIllinois.|1The President greets the pressinChicago.|2;run;/* create stop list*/datasascas1.stopList;infiledatalines missover;lengthterm $20;inputterm$;datalines;thetoin;run;/* load word embedding model */proc cas;loadtable path='datasources/glove_100d_tab_clean.txt'caslib="CASTestTmp"importOptions={fileType="delimited",delimiter='\t',getNames=True,guessRows=2.0,varChars=True}casOut={name='glove'replace=True};run;quit;%macrocalculateRWMD(textDS=documents,documentID=did,text=text,language=English,stopList=stopList,word2VectDS=glove,doc1_id=1,doc2_id=2);/* text parsing and aggregation */proc cas;textParse.tpParse/table={name="&textDS",where="&documentID=&doc1_id or &documentID=&doc2_id"}docId="&documentID",language="&language",stemming=False,nounGroups=False,tagging=False,offset={name="outpos",replace=1},text="&text";run; textparse.tpaccumulate/parent={name="outparent1",replace=1}language="&language",offset='outpos',stopList={name="&stoplist"},terms={name="outterms1",replace=1},child={name="outchild1",replace=1},reduce=1,cellweight='none',termWeight='none';run;quit;/* terms of the two test documents */proc cas;loadactionset"fedsql";execdirect casout={name="doc_terms",replace=true}query="

select outparent1.*,_term_

from outparent1

left join outterms1

on outparent1._termnum_ = outterms1._termnum_

where _Document_=&doc1_id or _Document_=&doc2_id;

";run;quit;/* term vectors and counts of the two test documents */proc cas;loadactionset"fedsql";execdirect casout={name="doc1_termvects",replace=true}query="

select word2vect.*

from &word2VectDS word2vect, doc_terms

where _Document_=&doc2_id and lowcase(term) = _term_;

";run; execdirect casout={name="doc1_terms",replace=true}query="

select doc_terms.*

from &word2VectDS, doc_terms

where _Document_=&doc2_id and lowcase(term) = _term_;

";run; simple.groupBy /table={name="doc1_terms"}inputs={"_Term_","_Count_"}aggregator="n"casout={name="doc1_termcount",replace=true};run;quit;proc cas;loadactionset"fedsql";execdirect casout={name="doc2_termvects",replace=true}query="

select word2vect.*

from &word2VectDS word2vect, doc_terms

where _Document_=&doc1_id and lowcase(term) = _term_;

";run; execdirect casout={name="doc2_terms",replace=true}query="

select doc_terms.*

from &word2VectDS, doc_terms

where _Document_=&doc1_id and lowcase(term) = _term_;

";run; simple.groupBy /table={name="doc2_terms"}inputs={"_Term_","_Count_"}aggregator="n"casout={name="doc2_termcount",replace=true};run;quit;/* calculate Euclidean distance between words */datadoc1_termvects;setsascas1.doc1_termvects;run;datadoc2_termvects;setsascas1.doc2_termvects;run;proc iml;use doc1_termvects;read allvar_char_intolterm;read allvar_num_intox;closedoc1_termvects; use doc2_termvects;read allvar_char_intorterm;read allvar_num_intoy;closedoc2_termvects; d = distance(x,y); lobs=nrow(lterm);robs=nrow(rterm);d_out=j(lobs*robs, 3, ' ');doi=1to lobs;doj=1to robs;d_out[(i-1)*robs+j,1]=lterm[i];d_out[(i-1)*robs+j,2]=rterm[j];d_out[(i-1)*robs+j,3]=cats(d[i,j]);end;end;createdistancefromd_out;appendfromd_out;closedistance;run;quit;/* calculate RWMD between documents */datax_set;setsascas1.doc1_termcount;rename_term_=_node_;_weight_=_count_;run;datay_set;setsascas1.doc2_termcount;rename_term_=_node_;_weight_=_count_;run;dataarcdata;setdistance;renamecol1=_tail_;renamecol2=_head_;length_cost_8;_cost_= col3;run;proc optmodel;setxNODES;num w{xNODES};setyNODES;num u{yNODES};set<str,str> ARCS;num arcCost{ARCS}; readdatax_setintoxNODES=[_node_]w=_weight_;readdatay_setintoyNODES=[_node_]u=_weight_;readdataarcdataintoARCS=[_tail_ _head_]arcCost=_cost_;varflow{<i,j>inARCS}>=0;impvar sumY =sum{jinyNODES}u[j];minobj =(sum{<i,j>inARCS}arcCost[i,j]* flow[i,j])/sumY;con con_y{jinyNODES}:sum{<i,(j)>inARCS}flow[i,j]= u[j];/* con con_x {i in xNODES}: sum {<(i),j> in ARCS} flow[i,j] <= w[i];*/solve with lp / algorithm=ns scale=none logfreq=1;callsymput('obj', strip(put(obj,best.)));createdataflowDatafrom[i j]={<i, j="">inARCS: flow[i,j].sol >0}col("cost")=arcCost[i,j]col("flowweight")=flow[i,j].sol;run;quit;%putRWMD=&obj;%mendcalculateRWMD; %calculateRWMD(textDS=documents,documentID=did,text=text,language=English,stopList=stopList,word2VectDS=glove,doc1_id=1,doc2_id=2);

<str,str>

<str,str>proc printdata=flowdata;run;quit;



WMD方法不仅可以测量文档的相似性,还可以通过可视化流数据来解释为什么这两个文档是相似的。

 

相关文章
|
SQL DataWorks NoSQL
DataWorks报错问题之datax mongodb全量迁移报错如何解决
DataWorks是阿里云提供的一站式大数据开发与管理平台,支持数据集成、数据开发、数据治理等功能;在本汇总中,我们梳理了DataWorks产品在使用过程中经常遇到的问题及解答,以助用户在数据处理和分析工作中提高效率,降低难度。
|
11月前
|
机器学习/深度学习 人工智能 自然语言处理
VideoWorld:字节开源自回归视频生成模型,支持输入视频指导AI生成视频!弥补文本生成视频的短板
VideoWorld 是由字节跳动、北京交通大学和中国科学技术大学联合推出的自回归视频生成模型,能够从未标注的视频数据中学习复杂知识,支持长期推理和规划任务。
1035 8
VideoWorld:字节开源自回归视频生成模型,支持输入视频指导AI生成视频!弥补文本生成视频的短板
|
分布式计算 DataWorks 数据管理
DataWorks操作报错合集之写入ODPS目的表时遇到脏数据报错,该怎么解决
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
481 0
|
弹性计算 黑灰产治理
阿里云学生专享免费云服务器
阿里云学生专享免费云服务器,2023阿里云学生服务器免费领取,先完成学生认证即可免费领取一台云服务器ECS,配置为2核2G、1M带宽、40G系统盘,在云服务器ECS实例过期之前,完成实验与认证任务,还可以免费续费6个月,阿里云百科来详细说下2023阿里云学生服务器活动、学生机配置、免费时长及学生服务器领取条件:
30565 2
阿里云学生专享免费云服务器
|
SQL 消息中间件 canal
基于 Flink SQL 构建流批一体的 ETL 数据集成
如何利用 Flink SQL 构建流批一体的 ETL 数据集成。
基于 Flink SQL 构建流批一体的 ETL 数据集成
|
分布式计算 专有云 MaxCompute
ODPS到ODPS数据迁移指南
1. 工具选择与方案确定 目前,有两种方式可用于专有云环境下的从MaxCompute到MaxCompute整体数据迁移。 (1)使用DataX工具进行迁移,迁移所需的作业配置文件及运行脚本,可用DataX批量配置工具来生成; .
7327 0
ODPS到ODPS数据迁移指南
|
存储 弹性计算 算法
Dsm as deepin mate(2):在阿里云上真正实现单盘安装运行skynas
本文关键字:单盘群晖,本验证码版黑群
690 0
Dsm as deepin mate(2):在阿里云上真正实现单盘安装运行skynas
|
分布式计算 Hadoop 分布式数据库
通过Datax将CSV文件导入Hbase,导入之前的CSV文件大小和导入之后的Hadoop分布式文件大小对比引入的思考
由于项目需要做系统之间的离线数据同步,因为实时性要求不高,因此考虑采用了阿里的datax来进行同步。在同步之前,将数据导出未csv文件,因为需要估算将来的hbase运行的hadoop的分布式文件系统需要占用多少磁盘空间,因此想到了需要做几组测试。
2407 0
|
关系型数据库 数据库 数据安全/隐私保护
MySQL5.7 添加用户、删除用户与授权
原文:MySQL5.7 添加用户、删除用户与授权 mysql -uroot -proot MySQL5.7 mysql.user表没有password字段改 authentication_string; 一.
1637 0
|
Java 大数据 DataX
datax常见问题
datax常见问题
3919 0