R语言使用Metropolis- Hasting抽样算法进行逻辑回归

简介: R语言使用Metropolis- Hasting抽样算法进行逻辑回归

在逻辑回归中,我们将二元响应\(Y_i \)回归到协变量\(X_i \)上。下面的代码使用Metropolis采样来探索\(\ beta_1 \)和\(\ beta_2 \)的后验YiYi到协变量XiXi。


定义expit和分对数链接函数

logit<-function(x){log(x/(1-x))} 此函数计算\((\ beta_1,\ beta_2)\)的联合后验。它返回后验的对数以获得数值稳定性。(β1,β2)(β1,β2)。它返回后验的对数以获得数值稳定性。
log_post<-function(Y,X,beta){
    prob1  <- expit(beta[1] + beta[2]*X)
like+prior}

这是MCMC的主要功能.can.sd是候选标准偏差。

Bayes.logistic<-function(y,X,
                         n.samples=10000,
                         can.sd=0.1){
 
     keep.beta     <- matrix(0,n.samples,2)
     keep.beta[1,] <- beta

     acc   <- att <- rep(0,2)
 
    for(i in 2:n.samples){

      for(j in 1:2){

       att[j] <- att[j] + 1

      # Draw candidate:

       canbeta    <- beta
       canbeta[j] <- rnorm(1,beta[j],can.sd)
       canlp      <- log_post(Y,X,canbeta)

      # Compute acceptance ratio:

       R <- exp(canlp-curlp)
       U <- runif(1)
       if(U<R){
          acc[j] <- acc[j]+1
       }
     }
     keep.beta[i,]<-beta

   }
   # Return the posterior samples of beta and
   # the Metropolis acceptance rates
list(beta=keep.beta,acc.rate=acc/att)}

生成一些模拟数据

 set.seed(2008)
 n         <- 100
 X         <- rnorm(n)
  true.p    <- expit(true.beta[1]+true.beta[2]*X)
 Y         <- rbinom(n,1,true.p)

拟合模型

burn      <- 10000
 n.samples <- 50000
  fit  <- Bayes.logistic(Y,X,n.samples=n.samples,can.sd=0.5)
 tock <- proc.time()[3]

 tock-tick
## elapsed
##    3.72


结果


abline(true.beta[1],0,lwd=2,col=2)


abline(true.beta[2],0,lwd=2,col=2)


hist(fit$beta[,1],main="Intercept",xlab=expression(beta[1]),breaks=50)



hist(fit$beta[,2],main="Slope",xlab=expression(beta[2]),breaks=50) abline(v=true.beta[2],lwd=2,col=2)



print("Posterior mean/sd")
## [1] "Posterior mean/sd"
 print(round(apply(fit$beta[burn:n.samples,],2,mean),3))
## [1] -0.076  0.798
 print(round(apply(fit$beta[burn:n.samples,],2,sd),3))
## [1] 0.214 0.268
    print(summary(glm(Y~X,family="binomial")))
##
## Call:
## glm(formula = Y ~ X, family = "binomial")
##
## Deviance Residuals:
##     Min       1Q   Median       3Q      Max
## -1.6990  -1.1039  -0.6138   1.0955   1.8275
##
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.07393    0.21034  -0.352  0.72521
## X            0.76807    0.26370   2.913  0.00358 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##     Null deviance: 138.47  on 99  degrees of freedom
## Residual deviance: 128.57  on 98  degrees of freedom
## AIC: 132.57
##
## Number of Fisher Scoring iterations: 4
相关文章
|
1月前
|
机器学习/深度学习 算法 大数据
蓄水池抽样算法详解及Python实现
蓄水池抽样是一种适用于从未知大小或大数据集中高效随机抽样的算法,确保每个元素被选中的概率相同。本文介绍其基本概念、工作原理,并提供Python代码示例,演示如何实现该算法。
34 1
|
7月前
|
机器学习/深度学习 存储 算法
用kNN算法诊断乳腺癌--基于R语言
用kNN算法诊断乳腺癌--基于R语言
|
7月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
4月前
|
机器学习/深度学习 资源调度 算法
R语言逻辑回归与分类模型的深度探索与应用
【8月更文挑战第31天】逻辑回归作为一种经典的分类算法,在R语言中通过`glm()`函数可以轻松实现。其简单、高效且易于解释的特点,使得它在处理二分类问题时具有广泛的应用价值。然而,值得注意的是,逻辑回归在处理非线性关系或复杂交互作用时可能表现不佳,此时可能需要考虑其他更复杂的分类模型。
|
4月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
89 3
|
5月前
|
机器学习/深度学习 人工智能 算法
算法金 | 这绝对是不一样的,独一无二的逻辑回归算法体验
算法导师“算法金”分享了更新的AI课件,邀请读者找错并提建议,采纳者可免费参与其付费专栏内测并获赠两份成品。文中提供了多张相关图片,但未直接展示具体内容。读者可通过链接参与互动,助力完善内容。
33 3
算法金 | 这绝对是不一样的,独一无二的逻辑回归算法体验
|
5月前
|
机器学习/深度学习 数据采集 人工智能
|
7月前
|
机器学习/深度学习 算法
【机器学习】比较朴素贝叶斯算法与逻辑回归算法
【5月更文挑战第10天】【机器学习】比较朴素贝叶斯算法与逻辑回归算法
|
7月前
|
算法 项目管理
R语言实现蒙特卡洛模拟算法
R语言实现蒙特卡洛模拟算法