基于出租车GPS轨迹数据的研究:出租车行程的数据分析

简介: 基于出租车GPS轨迹数据的研究:出租车行程的数据分析

数据

Reddit用户imjasonh和fhoffa解析了原始数据 ,该模式如下所示:


每次骑行都有非常具体的上/下车位置以及开始/结束时间的详细信息。 下面显示了一个示例 :


我们留下了158,320,608个出租车行程的数据集,分为32,654个不同的起点/终点。


 

自1987年以来,位于东79街和约克大街的出租车站一直将上东区的居民带到华尔街。

我在数据中发现了沿着这条路线的252,210次旅行。出租车平均需要20.35分钟才能以22.11 mph的速度行驶。当然,您会在凌晨4点走得更快,但是大多数人直到凌晨6点或凌晨7点才开始上下班:


一年中,最专用的出租车使路线行驶234次(只有7条出租车使路线行驶100次):


尽管前十名最常见的出租车司机的平均速度较可预测,但他们的前进速度并没有比大多数人快(这可能是因为他们经常每天同时开车)。

SELECT
  pickup_street1, pickup_street2, dropoff_street1, dropoff_street2,
  trips_medallion, trips_pickup_datetime, trips_dropoff_datetime,
  ROUND(trips_avg_mph,4) AS avg_mpg,
  ROUND(trips_trip_duration_hours,4) AS num_hours
FROM
  [taxi_strava.joined_geohash_geonames]
WHERE
  trips_geohashed_dropoff = 'dr5ru2'
  AND trips_geohashed_pickup = 'dr5rvj'
相关文章
|
3月前
|
数据挖掘 PyTorch TensorFlow
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
某A保险公司的 数据图表和数据分析
某A保险公司的 数据图表和数据分析
61 0
某A保险公司的 数据图表和数据分析
|
4月前
|
数据采集 DataWorks 数据挖掘
提升数据分析效率:DataWorks在企业级数据治理中的应用
【8月更文第25天】本文将探讨阿里巴巴云的DataWorks平台如何通过建立统一的数据标准、规范以及实现数据质量监控和元数据管理来提高企业的数据分析效率。我们将通过具体的案例研究和技术实践来展示DataWorks如何简化数据处理流程,减少成本,并加速业务决策。
470 54
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
如何理解数据分析及数据的预处理,分析建模,可视化
如何理解数据分析及数据的预处理,分析建模,可视化
53 0
|
3月前
|
机器学习/深度学习 数据挖掘 TensorFlow
🔍揭秘Python数据分析奥秘,TensorFlow助力解锁数据背后的亿万商机
【9月更文挑战第11天】在信息爆炸的时代,数据如沉睡的宝藏,等待发掘。Python以简洁的语法和丰富的库生态成为数据分析的首选,而TensorFlow则为深度学习赋能,助你洞察数据核心,解锁商机。通过Pandas库,我们可以轻松处理结构化数据,进行统计分析和可视化;TensorFlow则能构建复杂的神经网络模型,捕捉非线性关系,提升预测准确性。两者的结合,让你在商业竞争中脱颖而出,把握市场脉搏,释放数据的无限价值。以下是使用Pandas进行简单数据分析的示例:
46 5
|
4月前
|
存储 数据挖掘 数据处理
DataFrame探索之旅:如何一眼洞察数据本质,提升你的数据分析能力?
【8月更文挑战第22天】本文通过电商用户订单数据的案例,展示了如何使用Python的pandas库查看DataFrame信息。首先导入数据并使用`head()`, `columns`, `shape`, `describe()`, 和 `dtypes` 方法来快速概览数据的基本特征。接着,通过对数据进行分组操作计算每位顾客的平均订单金额,以此展示初步数据分析的过程。掌握这些技能对于高效的数据分析至关重要。
42 2
|
4月前
|
数据采集 机器学习/深度学习 算法
"揭秘数据质量自动化的秘密武器:机器学习模型如何精准捕捉数据中的‘隐形陷阱’,让你的数据分析无懈可击?"
【8月更文挑战第20天】随着大数据成为核心资源,数据质量直接影响机器学习模型的准确性和效果。传统的人工审查方法效率低且易错。本文介绍如何运用机器学习自动化评估数据质量,解决缺失值、异常值等问题,提升模型训练效率和预测准确性。通过Python和scikit-learn示例展示了异常值检测的过程,最后强调在自动化评估的同时结合人工审查的重要性。
100 2
|
3月前
|
机器学习/深度学习 数据挖掘 TensorFlow
从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路
【9月更文挑战第10天】从数据新手成长为AI专家,需先掌握Python基础语法,并学会使用NumPy和Pandas进行数据分析。接着,通过Matplotlib和Seaborn实现数据可视化,最后利用TensorFlow或PyTorch探索深度学习。这一过程涉及从数据清洗、可视化到构建神经网络的多个步骤,每一步都需不断实践与学习。借助Python的强大功能及各类库的支持,你能逐步解锁数据的深层价值。
67 0
|
4月前
|
SQL 数据挖掘 Serverless
SQL 窗口函数简直太厉害啦!复杂数据分析的超强利器,带你轻松攻克数据难题,快来一探究竟!
【8月更文挑战第31天】在数据驱动时代,高效处理和分析大量数据至关重要。SQL窗口函数可对一组行操作并返回结果集,无需分组即可保留原始行信息。本文将介绍窗口函数的分类、应用场景及最佳实践,助您掌握这一强大工具。例如,在销售数据分析中,可使用窗口函数计算累计销售额和移动平均销售额,更好地理解业务趋势。
68 0
|
4月前
|
SQL 数据可视化 数据挖掘
SQL 在数据分析中简直太牛啦!从数据提取到可视化,带你领略强大数据库语言的神奇魅力!
【8月更文挑战第31天】在数据驱动时代,SQL(Structured Query Language)作为强大的数据库查询语言,在数据分析中扮演着关键角色。它不仅能够高效准确地提取所需数据,还能通过丰富的函数和操作符对数据进行清洗与转换,确保其适用于进一步分析。借助 SQL 的聚合、分组及排序功能,用户可以从多角度深入分析数据,为企业决策提供有力支持。尽管 SQL 本身不支持数据可视化,但其查询结果可轻松导出至 Excel、Python、R 等工具中进行可视化处理,帮助用户更直观地理解数据。掌握 SQL 可显著提升数据分析效率,助力挖掘数据价值。
76 0