R语言用WinBUGS 软件对学术能力测验(SAT)建立分层模型

简介: R语言用WinBUGS 软件对学术能力测验(SAT)建立分层模型

R2WinBUGS软件包提供了从R调用WinBUGS的便捷功能。它自动以WinBUGS可读的格式写入数据和脚本,以进行批处理(自1.4版开始)。WinBUGS流程完成后,可以通过程序包本身将结果数据读取到R中(这提供了推断和收敛诊断的紧凑图形摘要),也可以使用coda程序包的功能对输出进行进一步分析。

WinBUGS软件可从http://www.mrc-bsu.cam.ac.uk/bugs/免费获得。  

R是一种“用于数据分析和图形处理的语言”,是一种实现该语言的开放源代码和免费提供的统计软件包,请参见http://www.R-project.org/。  R和R2WinBUGS可从CRAN 获得,即http://CRAN.R-Project.org或其镜像之一。R2WinBUGS可以移植到商业实施S-Plus。如果可以使用Internet连接,则可以在R命令提示符下键入install.packages(“ R2WinBUGS”)来安装R2WinBUGS。别忘了用library(R2WinBUGS)


例子


学校数据

学术能力测验(SAT)衡量高中生的能力,以帮助大学做出入学决定。我们的数据来自1970年代后期进行的一项实验,来自八所高中的SAT-V(学业能力测试语言)。SAT-V是由教育测试服务局管理的标准多项选择测试。该服务对所选学校中每所学校的教练计划的效果很感兴趣。


实现

R2WinBUGS软件包的实现非常简单。\ main“函数bugs() 旨在由用户调用。原则上,它是对 其中逐步调用的其他几个函数的包装,如下:

1. bugs.data.inits()写入数据文件' data.txt”和“ inits1.txt”,“ inits2.txt” ...进入 工作目录。

2. bugs.script()写入WinBUGS用于批处理的文件“ script.txt”。

3. bugs.run()更新WinBUGS注册表中自适应阶段的长度 ,调用WinBUGS,并使用 'script.txt' 以批处理模式运行它。

R2WinBUGS软件包的实现非常简单。\ main“函数bugs()

原则上,它是对 其中逐步调用的其他几个函数的包装,如下:

1. bugs.data.inits()写入数据文件' data.txt”和“ inits1.txt”,“ inits2.txt” ...进入 工作目录,这些文件将由WinBUGS在批处理过程中使用。

2 . bugs.script()写入文件“ script”。txt”,由WinBUGS用于批处理 。

3. bugs.run()更新WinBUGS注册表中自适应阶段的长度(使用bugs.update.settings()函数),调用WinBUGS并批量运行“script.txt”。

4. bugs.sims()如果参数codaPkg已设置为false(默认值)才调用。

否则,bugs()返回存储数据的文件名。例如,这些可以通过打包的coda 导入,该软件包提供了收敛诊断,蒙特卡洛估计的计算,迹线图等功能。

bugs.sims()函数将WinBUGS中的模拟读取到R中(不一定 由bugs()本身调用),将其格式化,监视收敛,执行收敛检查并

计算中位数和分位数。它还为bugs()本身准备输出。

这些功能不旨在由用户直接调用。如果合适,参数将从bugs()传递给其他函数。一个简短的bugs()帮助文件,其中列出了

软件包R2WinBUGS 之后,请在R中进行调试


例子

我们将 R2WinBUGS提供的功能应用于示例数据并分析输出。

学校数据

示例数据 :



> schools

为了对这些数据进行建模,我们使用了Gelman等人提出的分层模型。我们假设每所学校的观测估计值具有正态分布,且均值theta 和反方差tau.y。逆方差为1 =σ.y2,其先验分布在(0,1000)上是均匀的。对于均值theta,我们采用另一个正态分布 平均mu.theta和反方差tau.theta。有关其先前的分布,请参见以下

WinBUGS代码:

model {
for (j in 1:J)
{
y[j] ~ dnorm (theta[j], tau.y[j])
theta[j] ~ dnorm (mu.theta, tau.theta)
tau.y[j] <- pow(sigma.y[j], -2)
}
mu.theta ~ dnorm (0.0, 1.0E-6)
tau.theta <- pow(sigma.theta, -2)
sigma.theta ~ dunif (0, 1000)
}

此模型必须存储在单独的文件中,例如'schools.bug'2,在适当的目录中,例如c:/ schools /。在R中,用户必须准备bugs()函数所需的数据输入。这可以是包含每个数据向量名称的列表,例如


> J <- nrow(schools)


使用这些数据和模型文件,我们可以运行MCMC模拟以获取theta, mu.theta和sigma.theta的估计值。在运行之前,用户必须确定要运行多少个链 (n.chain = 3)和迭代次数(n.iter = 1000)。另外,用户必须指定链的初始值,例如通过编写函数。

> inits <- function(){
+ list(theta = rnorm(J, 0, 100), mu.theta = rnorm(1, 0, 100),
+ sigma.theta = runif(1, 0, 100))
+ }

可以开始MCMC模拟,R中的参数bugs.directory必须指向WinBUGS的安装目录。可以通过print(schools.sim)方便地打印school.sim对象中的结果。泛型函数print()调用由R2WinBUGS提供的类错误对象的print方法。

对于此示例,将获得类似的结果

Inference for Bugs model at "c:/schools/schools.bug"
3 chains, each with 1000 iterations (first 500 discarded)
n.sims = 1500 iterations saved
mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
theta[1] 11.1 9.1 -3.0 5.0 10.0 16.0 31.8 1.1 39
theta[2] 7.6 6.6 -4.7 3.3 7.8 11.6 21.1 1.1 42
theta[3] 5.7 8.4 -12.5 0.6 6.1 10.8 21.8 1.0 150
theta[4] 7.1 7.0 -6.6 2.7 7.2 11.5 21.0 1.1 42
theta[5] 5.1 6.8 -9.5 0.7 5.2 9.7 18.1 1.0 83
theta[6] 5.7 7.3 -9.7 1.0 6.2 10.2 20.0 1.0 56
theta[7] 10.4 7.3 -2.1 5.3 9.8 15.3 25.5 1.1 27
theta[8] 8.3 8.4 -6.6 2.8 8.1 12.7 26.2 1.0 64
mu.theta 7.6 5.9 -3.0 3.7 8.0 11.0 19.5 1.1 35
sigma.theta 6.7 5.6 0.3 2.8 5.1 9.2 21.2 1.1 46
deviance 60.8 2.5 57.0 59.1 60.2 62.1 66.6 1.0 170
pD = 3 and DIC = 63.8 (using the rule, pD = var(deviance)/2)
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC is an estimate of expected predictive error (lower deviance is better).


此外,用户可以通过键入plot(schools.sim)生成结果图。结果图如图4所示。在该图中,左列显示了以下内容的快速摘要:

推论和收敛(所有参数的Rb都接近1.0,表明三个链的良好混合,因此近似收敛);右列显示每组参数的推论。从右栏中可以看到,R2WinBUGS使用 WinBUGS中的参数名称将输出构造为标量,向量和参数数组。

相关文章
|
6月前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
2月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
6月前
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
26天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
42 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
下一篇
无影云桌面