浅谈电信运营商的大数据应用探索

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

如《大数据时代》作者迈尔-舍恩伯格所说,“大数据开启了一次重大的时代转型。……大数据正在改变我们的生活以及理解世界的方式,成为新发明和新服务的源泉,而更多的改变正在蓄势待发。”随着互联网时代的到来,以及数据存储能力的提升和分布式计算技术的发展,人们发现了海量数据的潜在价值,不断在大数据领域做出探索,试图从中挖掘金矿。而在媒体与投资的热烈追逐下,挖掘大数据价值的浪潮也不可避免的泥沙俱下,“炒概念”的现象成为常态,以至于人们现在谈到“大数据”一词,已经带有一丝负面的含义。

电信运营商作为用户接触互联网乃至于移动互联网的管道,在接触、存储、分析、应用互联网行为数据(作为当前一般谈到的“大数据”的重要组成部分),有着先天的优势与无法替代的地位。为避免被“管道化”,运营商自然也不会错过这个风口,纷纷在大数据应用上做出积极地探索与尝试,甚至将其视为自身商业模式转型的重要资产与核心能力。

因此,本文旨在拨开当前“大数据”浮华与喧嚣的迷雾,梳理当前电信运营商大数据应用场景,试图从中发现当前运营商大数据应用的困难与不足,探讨未来可能改进和发展的方向。

一、电信运营商大数据应用场景

首先,让我们来看一下当前电信运营商在大数据对内对外的一些主要应用场景。

存量运营——全面、及时的用户画像

2014年是中国移动通信行业明确的“步入饱和”之年,相比之前5年每年年均一亿的净增用户,2014年净增势头猛降至不足六千万。而两年后的现在,固网与移动通信业务进入饱和甚至过饱和的时代,已经是行业内共识。各大运营商也纷纷将运营重点从用户新增向存量运营转变。而存量用户所沉淀的丰富数据,也使得大数据在存量运营上有了用武之地。

以宽带维系为例,依托于DPI(深度包检测)数据解析,运营商基于宽带用户的搜索浏览行为和偏好构建数据挖掘模型,可对用户进行更为全面的画像。借此,运营商有能力更迅速、更真实的还原用户对于带宽速率、增值服务、移动加装以及离网的需求,以便及时进行用户维系与挽留,以延长用户的生命周期,提升价值。举个例子,当某宽带用户群体有视频及游戏应用的使用习惯,又被分析挖掘模型识别为具有速率需求,结合业务数据发现其属于低带宽用户群,另外该部分用户近日还浏览了友商的宽带办理页面,那么,及时通过预存送提速的手段便有可能有效挽留该用户群。对比传统仅依靠用户宽带使用行为的变化或客服投诉数据进行离网预测,大数据的应用使得对用户需求的把握更加及时,也更加具体。

流量经营——找到流量提升的关键点

随着4G时代来临,移动流量收入已成为新的业务增长点,各大运营商已将以往语音经营的精力和资源更多地投放到流量经营上。而大数据在流量经营上的发力点,主要在于找到流量提升的关键要素。

2015年中国电信便提出“大流量发动机”、“大流量发生器”、“大流量发生区”等概念。类似于亚马逊的关联推荐,运营商也试图在用户使用的手机、APP应用、所在区域等特征,与流量使用的多少之间找到关联性。以手机终端为例,分析发现,流量消费与终端的价格成正比。另外,iPhone用户户均流量则远超其他品牌用户。而在APP应用方面,用户在手机微博上花费的流量,意外的远超许多视频应用。这些发现,为迫切希望提高用户流量的运营商在终端采购及选择合作对象等工作上都提供了参考。

异网策反——用户与产品的精确匹配

如前文提到的,移动通信市场已基本饱和。那么,从他网策反用户,便成为运营商提升移动用户规模为数不多的选择之一。而用户的使用惯性,换号产生的社交不便,以及友商对自家存量用户的日益重视,都提高了异网策反的难度。

运用大数据,则可使产品更加精确地匹配到合适的用户上,以提高策反的成功机率。其中一个方式,便是通过家庭宽带与公共Wi-Fi的访问记录,分析用户终端使用情况,并通过挖掘模型对用户进行分群,匹配相应产品进行策反。譬如,在三星旗舰新机发布阶段,挖掘对三星品牌有一定忠诚度的三星老旧终端机主,通过“以旧换新”吸引、策反用户。

对外应用——运营商数据的外行业变现

由于海量数据资产与自身有限产品间的不平衡,运营商纷纷着眼于自有数据在外行业的交易与变现,而合作的方向更是多点开花。某地运营商就提出以金融业信用查询、房地产行业精确营销、RTB(即时竞价)精准广告及政企客户行业咨询报告等四大方向作为2016年大数据变现的重点。在这方面相关的文章论述很多,在此就不多做赘述了。

二、当前电信运营商大数据应用的困难与不足

当然以上对运营商大数据应用场景的简述难免挂一漏万,更重要的是通过以上场景,可以一窥运营商在当前大数据应用上所遭遇的一些困难与不足:

数据全面性的不足

从定义上讲,大数据的首要特性就在于“大而全”。以全体数据替代传统随机样本才是真正的“大数据”。但受限于当前三家运营商瓜分用户的市场格局(之后还有广电的进入),哪家都无法获取全量用户的通信行为。这就对运营商推动数据外部合作产生了不小的阻力。比如面对银行业所需的客户征信需求,运营商只能提供使用自家业务的用户信用情况,无法完全满足合作方需求。这对于市场占有比例较大的运营商,如在移动通信市场上的中国移动,问题还不算太大。但对于处于弱势的运营商,无疑是沉重地打击。

投入与产出的不匹配

正如本文开篇便提到的,由于媒体和资本对大数据的热烈追捧,当前大数据这一概念承载了超过其自身实在的商业价值。无须讳言,运营商在大数据实践上也存在一定程度的形式主义。一些所谓的大数据专题,往往只追求概念和创新,忽视对投入产出的分析,以至于花费了大量人力和资源投入的大数据项目收效甚微。另外,由于整个业界对大数据的理解和运用都处于探索阶段,也导致了部分大数据专题或项目的效果甚至还不如采用传统方式。

及时性有待提高

由于电商渠道的普及,当运营商捕捉到用户需求时,往往用户已在线上完成消费过程。即使像阿里这样拥有海量用户购物信息,并在大数据挖掘投入大量资源的互联网企业,也没能很好地解决这一问题,经常向用户推荐其已经购买或已无兴趣购买的产品。不仅无法促成消费,更影响了用户的体验。因此,数据获取和分析的时效性,以及营销执行的及时性,是运营商用好大数据必须先解决的问题。

用户隐私的保护

提到大数据,用户隐私与信息权益是个绕不开的话题。被称为“大数据时代预言家”的迈尔-舍恩伯格所著的《删除》便探讨了这一困境,并对6种常见的解决应对方案进行一一分析,比如数据节制(人们不再向互联网提供个人信息)、加强隐私权保护的法律等,而又基于与大数据理念相悖等种种原因给予了反驳与否定。其在书中提出的引入信息时间期限及“遗忘”机制,当前也未具备足够的理念与技术基础。应该说,在大数据时代的信息隐私保护仍未有令人满意的方案。

运营商无疑有着跨出外行业数据合作步伐的强烈愿望,然而,对用户信息保护的顾虑却与之产生了矛盾。运营商一方面希望运营自身数据资产,提供各行业数据报告与服务,另一方面又在数据的发布上设置各种限制,导致数据合作的内容和形式十分有限,陷入“有价值的数据无法提供,提供的数据价值有限”之困局。

三、电信运营商大数据应用的未来

然而办法总比困难多,针对以上提到这些困难与不足,在文章最后的部分也提出了几点在未来改进的可能方向,希望抛砖引玉,供读者参考:

开放怀抱,融入大数据生态链

无论是运营商也好,金融业或互联网的巨头也好,在信息社会中,哪一方玩家也无法掌握全局的信息。与其“抱残守缺”,不如积极融入到大数据行业的生态链当中。大数据交易所便是当前一种有益的尝试。运营商可将自己的信息加工,与其他“卖家”一起摆上摊档,由买家自己选择组合,拼凑出对其最有价值也最具个性化的信息拼盘。

结果导向,以终为始

应该说,人们对大数据的认知,已逐步从概念的阶段转入工具的阶段,从飘在云端的概念落到一个个实际的应用和实践当中。在这种背景之下,运营商应该转变思维,重新从战略与业务目标出发,对比考察大数据对不同业务的实际应用效果,有选择性的用好大数据这一工具,踏踏实实的做好每一个应用场景,从真正意义上使大数据为业务发展服务。

自动化、一体化的营销服务体系的建立

传统、个案式、业务驱动的电信营销模式,可能已经无法满足互联网时代的用户需求。只有数据驱动、用户导向、自动触发的营销服务体系,才能发挥“大数据挖掘用户需求”的作用。建立自动化、一体化的营销服务体系,通过提前预案,进行用户分群,并对不同用户群体匹配相应的产品、渠道、时机,符合预设条件便自动触发营销行为。如此,方能及时把握用户需求,促成订购行为。

信息合作,利益共享

据笔者观察,对比许多互联网企业“明目张胆”的采集、使用用户数据,用户往往对于运营商的相同行为更加敏感和反感。其中一个主要原因恐怕是互联网企业提供的往往是一种所谓“免费”的服务。比如通过淘宝平台购物,买家并不需要直接向阿里支付费用,因此将自己的部分信息使用权让渡给阿里,被用户视为一种可以接受的折衷(trade-off)。而用户使用运营商服务,则是实实在在地付出了套餐费用,更难接受运营商使用自己的数据。这种理论是否合理暂不讨论,但这种想法却是确实存在的。

既然如此,运营商可否转变观念,与用户订立自愿性质的信息使用协议?协议以一定的价格优惠换取对用户信息使用的许可,不同级别的使用许可能够换取不同程度的价格优惠。再通过这部分数据的变现补足在传统业务上的收入下降,逐步实现业务模式的转型。总之,与其在数据开发与用户隐私的矛盾之中裹足不前,不如主动放弃一部分利益,换取大数据时代的先机。

当然,以上的想法与建议是否可行,还需待时间与实践的考验。本文提到的困难显然不会阻止运营商在大数据这一领域持续地投入与尝试,许多不足也只是技术或理念的暂时限制。随着大数据技术的不断突破与应用经验的沉淀积累,相信这些问题都能一一找到应对的方案。





====================================分割线================================


本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
93 1
|
1月前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
58 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
ly~
|
1月前
|
供应链 搜索推荐 安全
大数据模型的应用
大数据模型在多个领域均有广泛应用。在金融领域,它可用于风险评估与预测、智能营销及反欺诈检测,助力金融机构做出更加精准的决策;在医疗领域,大数据模型能够协助疾病诊断与预测、优化医疗资源管理和加速药物研发;在交通领域,该技术有助于交通流量预测、智能交通管理和物流管理,从而提升整体交通效率;电商领域则借助大数据模型实现商品推荐、库存管理和价格优化,增强用户体验与企业效益;此外,在能源和制造业中,大数据模型的应用范围涵盖从需求预测到设备故障预测等多个方面,全面推动了行业的智能化转型与升级。
ly~
98 2
ly~
|
1月前
|
供应链 搜索推荐 大数据
大数据在零售业中的应用
在零售业中,大数据通过分析顾客的购买记录、在线浏览习惯等数据,帮助零售商理解顾客行为并提供个性化服务。例如,分析网站点击路径以了解顾客兴趣,并利用历史购买数据开发智能推荐系统,提升销售和顾客满意度。此外,大数据还能优化库存管理,通过分析销售数据和市场需求,更准确地预测需求,减少库存积压和缺货现象,提高资金流动性。
ly~
295 2
ly~
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
大数据在智慧金融中的应用
在智能算法交易中,深度学习揭示价格波动的复杂动力学,强化学习依据市场反馈优化策略,助力投资者获取阿尔法收益。智能监管合规利用自然语言处理精准解读法规,实时追踪监管变化,确保机构紧跟政策。大数据分析监控交易,预警潜在违规行为,变被动防御为主动预防。数智化营销通过多维度数据分析,构建细致客户画像,提供个性化产品推荐。智慧客服借助 AI 技术提升服务质量,增强客户满意度。
ly~
111 2
ly~
|
1月前
|
供应链 监控 搜索推荐
大数据的应用场景
大数据在众多行业中的应用场景广泛,涵盖金融、零售、医疗保健、交通物流、制造、能源、政府公共服务及教育等领域。在金融行业,大数据用于风险评估、精准营销、反欺诈以及决策支持;零售业则应用于商品推荐、供应链管理和门店运营优化等;医疗保健领域利用大数据进行疾病预测、辅助诊断和医疗质量评估;交通物流业通过大数据优化物流配送、交通管理和运输安全;制造业则在生产过程优化、设备维护和供应链协同方面受益;能源行业运用大数据提升智能电网管理和能源勘探效率;政府和公共服务部门借助大数据改善城市管理、政务服务及公共安全;教育行业通过大数据实现个性化学习和资源优化配置;体育娱乐业则利用大数据提升赛事分析和娱乐制作水平。
ly~
386 2
|
29天前
|
Oracle 大数据 数据挖掘
企业内训|大数据产品运营实战培训-某电信运营商大数据产品研发中心
本课程是TsingtaoAI专为某电信运营商的大数据产品研发中心的产品支撑组设计,旨在深入探讨大数据在电信运营商领域的应用与运营策略。通过密集的培训,从数据的本质与价值出发,系统解析大数据工具和技术的最新进展,深入剖析行业内外的实践案例。课程涵盖如何理解和评估数据、如何有效运用大数据技术、以及如何在不同业务场景中实现数据的价值转化。
38 0
|
2月前
|
存储 数据可视化 大数据
大数据管理与应用
大数据管理与应用是一门融合数学、统计学和计算机科学的新兴专业,涵盖数据采集、存储、处理、分析及应用,旨在帮助企业高效决策和提升竞争力。核心课程包括数据库原理、数据挖掘、大数据分析技术等,覆盖数据处理全流程。毕业生可从事数据分析、大数据开发、数据管理等岗位,广泛应用于企业、金融及互联网领域。随着数字化转型加速,该专业需求旺盛,前景广阔。
133 5
|
2月前
|
存储 搜索推荐 大数据
大数据在医疗领域的应用
大数据在医疗领域有广泛应用,包括电子病历的数字化管理和共享,提升医疗服务效率与协同性;通过数据分析支持医疗决策,制定个性化治疗方案;预测疾病风险并提供预防措施;在精准医疗中深度分析患者基因组信息,实现高效治疗;在药物研发中,加速疗效和副作用发现,提高临床试验效率。此外,在金融领域,大数据的“4V”特性助力业务决策前瞻性,被广泛应用于银行、证券和保险的风险评估、市场分析及个性化服务中,提升运营效率和客户满意度。
112 6
|
2月前
|
机器学习/深度学习 人工智能 分布式计算
人工智能与大数据的融合应用##
随着科技的快速发展,人工智能(AI)和大数据技术已经深刻地改变了我们的生活。本文将探讨人工智能与大数据的基本概念、发展历程及其在多个领域的融合应用。同时,还将讨论这些技术所带来的优势与挑战,并展望未来的发展趋势。希望通过这篇文章,读者能够对人工智能与大数据有更深入的理解,并思考其对未来社会的影响。 ##