什么样才算好图——从生图模型质量度量方法看模型能力的发展(上)

简介: 什么样才算好图——从生图模型质量度量方法看模型能力的发展




本文总结了近10年来的生图模型论文中用到的评价指标,并尝试解答两个问题

  1. 不同时期的评价标准都有哪些特点?
  2. 图片质量的评价如何辅助模型的迭代?


前言


随着各种文生图模型逐渐从toy project进入到生产链路,在线上实际落地并产生业务价值,同时自研/来源模型也进入了快速迭代的阶段。


一套直指问题、综合拓展性和复用性的评价指标变得尤为宝贵,从效果上来讲,如果说数据质量决定了模型效果的上限,那么指标的好坏直接决定了模型下限的位置。


2016年以前图像质量检测主要是在构建各种手动特征,最初图片质量是作为一个二类问题,后来根据不同的对象/场景衍生出多了分类的问题,2016年到2019年期间,GAN方法生成的图片越来越逼真,此时各家的指标更多的关注GAN生成图像和样本图像之间的差异以及生成图片的多样性(mode collapse)。


自2020年往后,transformor火遍机器学习圈,同时多模态大模型能力也越来越强,在图片美观度、真实度这种抽象的指标的评价在LLM上又有比较好的表现,同时因为zero-shot和few-shot的特性,在一些自定义的指标上LLM可以快速响应,对于使用方来说,这种方式也是更友好的。


2016年以前

在深度特征出现以前,传统方法设计了设计大量的手动特征特征来研究计算机美学这个问题。常见做法是通过各种图像变换产出不同的特征并通过一个有监督的模型评价评价整体的图片质量。

 手动特征方法


  • 主物体明确,背景不杂乱


一般来说我们希望图片主题明确,轮廓清晰,如下图左图内容就是一个较为杂乱的室内场景,右图明显优于左图,由于左图背景杂乱,图片边界有较多的边缘,而右图的边缘集中在图片中心。


具体实现方法,通过一个3*3的拉普拉斯滤波器对每一层通道进行边缘提取并取得均值,然后对整体resize到100*100的范围,将图片像素总和归一化,并分别投影到X轴和Y轴,取边缘98%作为边框的大小(Wx,Wy),按照前文的假设,越杂乱的图片边缘像素点越多,最终图片的边框面积为 1-Wx*Wy,图a和图b的边框面积分别为0.94和0.56。

  • 色彩分布


统计图片的色彩分布,最直观的就是颜色直方图。好的照片,一般会有一个统一的风格。或偏暖色,或偏冷色,这些都可以通过彩色直方图表征出来。同时,局部直方图的复杂程度,也可以反映出图像风格的一致性。


  • 色调分析


这是从色调的特性上来分享一张好图。一张好的静物摄影,色调一般会比较单一,不会五颜六色的各种颜色都杂糅在一起。


  • 模糊


一般来说一个模糊图片的质量要比清晰图片的质量更差的,假设一张模糊的图片是经过用高斯平滑滤波器处理后的,那么要在仅知道模糊图片的情况下计算出平滑参数即可评估出图片质量,这里是通过一个二阶傅立叶变化并计算大于某个阈值a(这里使用5)的频率数量来表示清晰图片的最大频率,自此我们评估出图片质量的一个评分。如下,a图的质量分数为0.91,b图为0.58


 深度特征


  • RAPID: Rating Pictorial Aesthetics using Deep Learning (ACM MM2014)


第一个使用深度学习做美学评分的论文了。作者考虑了在美学评估中要同时考虑整体布局和细节内容。因此作者除了将图片整体输入模型,还会从图片中抠出很多(patch)输入网络,两者结合起来进行分类。其在图片中抠取patch的方式在后续论文中都有借鉴。

  • Composition-preserving Deep Photo Aesthetics Assessment (CVPR 2016)


由于CNN中必须将图片resize到固定尺寸输入到网络,这种方式往往会破坏图片的布局,这种方法没有使用patch的分割方法,提出了一种Adaptive Spatial Pooling 的操作:动态地将不同 size 的 feature map 处理成指定的 size 大小,这个操作可以参考SPPNet。结合多个 Adaptive Spatial Pooling 得到多个 size 的 feature map。同时这时期一些论文也证明了场景语意信息对美学评分会有提升,后续论文也陆续尝试了将场景特征加入到网络中。

2016~2019


生成式对抗网络(Generative Adversarial Networks, GAN)自在2014年被Ian Goodfellow提出后,就在深度学习领域掀起了一场革命,GAN 主要分为两部分:生成模型和判别模型。生成模型的作用是模拟真实数据的分布,判别模型的作用是判断一个样本是真实的样本还是生成的样本,GAN 的目标是训练一个生成模型完美的拟合真实数据分布使得判别模型无法区分。从这里我们可以看出来,GAN的最终结果的好坏一定是要比较样本集和生成集的差距,同时为了不让最终的图片过于单一,多样性的指标也是要被考虑在内,又因为GAN本身是无监督的,一个好的评价方法(损失函数)直接会对结果造成影响。


 Inception Score(IS)


  • 方法


Inception Score(IS)FID中使用了Inception-v3,这个网络最初由google在2014年提出,用于ImageNet上的图片分类,输入一个图片,输出一个1000维的tensor代表输出类别,在GAN生成数据中常用来评价数据的多样性和数据的质量。


假定x为生成的图像,y为生成的图片的判别器的分类结果在IS中即为一个1000类别的分类,那么图片的质量越高则判别器的分类结果越稳定(属于某一个类别的概率越高),即P(y|x)的熵越小。


在此基础上,从一个图片集合的角度考虑,如果图片是多种多样的,那么他们涵盖的类目数也应该是尽可能多的,即P(y)的熵应该越大越好。


由于我们要最小化P(y|x)的熵:

最大化P(y)的熵:


说到衡量两个概率分布的距离的方式,那就是KL散度了,KL散度的一般形式如下:


由于实际中,选取大量生成样本,用经验分布模拟 p(y):


最终得到的IS计算公式为:


其实还是求P(y|x)和P(y)的KL散度套了一个exp,并不影响最终的单调性。


  • 局限性

  1. 当一个图片的类目本身并不确定,或者在原数据集中并没有出现过,那么此时的p(y|x)的概率密度就不再是一个尖锐的分布,而是趋于平缓,
  2. 不能判别出网络是否过拟合,当GAN生成数据和训练集完全相同时,会得到极高的IS分数,但是这种模型毫无作用。
  3. 如果某一个物体的类别本身就比较模糊,在几种类别会得到相近的分数,或者这个物体类别在ImageNet中不存在,那么p(y|x)的概率密度就不再是一个尖锐的分布;如果生成模型在每类上都生成了 50 个图片,那么生成的图片的类别边缘分布是严格均匀分布的,按照 Inception Score 的假设,这种模型不存在 mode collapse,但是,如果各类中的50个图片,都是一模一样的,仍然是 mode collapse(相同模式大量出现)。Inception Score 无法检测这种同类目下的重复出图的情况。


  • 总结


综上,Inception Score可以表现出数据的多样性和质量,适用于分类模型和生成模型数据集相近的情况,但是存在数值受内部权重影响较大和不能区分过拟合情况的问题,虽然在论文中非常常见,但是实际上生产使用的模型数据集会持续迭代,因此这个指标用于模型自身的迭代还是不够稳定。另外从文生图模型的角度来看,这个指标也无法表现模型对文本的响应程度。


 Fidelity (FID)


  • 方法


FID(Frechet Inception Distance)是GAN等定量评价指标之一,最早提出于2017年,由于IS在ImageNet上的局限性,当生成的数据样本超出ImageNet的范围时,该图片的效果是不好的,因此FID中使用的是生成数据分布和真实世界数据分布之间的距离,和Inception Score一样,FID也使用了Inception-v3模型,而FID并没有直接使用Inception-v3的分类结果,而是获取了最后一个池化层用于提取图片特征,通过计算两组图像(生成图像和真实图像)的均值和协方差,将激活函数的输出归纳为一个多变量高斯分布。然后将这些统计量用于计算真实图像和生成图像集合中的Frechet距离。同时因为Frechet距离关注的是多维空间中移动一个分布到另一个分布所需的“工作”量,所以对于不在ImageNet中,图片差距较大的情况下也可以有比较好的泛化能力。原文见https://arxiv.org/abs/1706.08500


Frechet距离的几何含义


  • 局限性


  1. FID和IS一样,依赖于现有特征的出现或不出现,即无法判断到生成的图片中产生的一些异常结构(头上出现一张嘴),这种情况FID也会认为是一张好图。
  2. 同IS,FID无法区分过拟合等。
  3. FID中假设了激活函数的输出(2048维度的Inception特征)是符合高斯分布的,但实际上这在ReLU之后的结果恒为正数,所以在FID的计算方式下不存在无偏的评估指标。


  • 结论


相较于IS,FID更专注于对于图片真实性的评价,在样本集之外的数据中也有比较好的效果,在mode collapsing问题上也适用,适合用作IS之外的补充,作者也证明FID优于IS,因为它对图像中的细微变化更敏感,即高斯模糊、高斯模糊、椒盐噪声。FID使用Inception网络将生成图像集合和真实图像集合转换为保留图像高维信息的特征向量。假设这两个特征向量的分布为高斯分布,并计算其均值和协方差矩阵。通过测量概率分布之间的“距离”(相似程度)来评估生成图像与真实图像的相似程度。值越小,质量越高。



 Kernel Inception Distance(KID)


论文:https://openreview.net/pdf?id=r1lUOzWCW


  • 方法


按照作者的描述,KID没有像FID那样的正态分布的假设,是一种无偏的估计。不同的是将图像的2048维Inception特征通过maximum mean discrepancy(MMD)的方法分别求两个分布不同样本在映射空间中的值,用于度量两个分布之间的距离。通过比较生成样本和真实样本之间的距离来评价图片生成的效果。


MMD是迁移学习中最常见的损失函数之一,MMD在设计之初重新考虑了对一个随机变量的表现形式,对于简单的方式我们可以给出一个概率分布函数,像正态分布函数,只要给出均值+方差就可以确定其分布,像高斯分布等,如果两个分布的均值和方差如果相同的话,这两个分布应该比较接近,但对于一些高阶的、复杂的随机变量,我们就没有办法给出其分布函数,也需要更高阶的参数(矩)描述一个分布。


论文《A Hilbert Space Embedding for Distributions》提出了一个高斯核函数,它对应的映射函数恰好可以映射到无穷维上,映射到无穷维上再求期望,正好可以得到随机变量的高阶矩。简单理解就是将一个分布映射到再生希尔伯特空间(RKHS)(每个核函数都对应一个RKHS)上的一个点,两个分布之间的距离就可以用两个点的内积进行表示。至此我们获得了一个随机变量的任意阶矩的表示。


当两个红点和蓝点在二维空间时,我们很难把他们分开,当映射到多维空间后事情就很容易了


这种方法相比于FLD可以小数据集上更快达到稳定的效果。同时因为KID有一个三次核的无偏估计值,它更一致地匹配人类的感知。



  • 结论


对比FID,KID是无偏的,FID是有偏的,在时间效率上,FID为O(n),KID为O(n^2)



 Learned Perceptual Image Patch Similarity(LPIPS)


LPIPS在2018年提出,是一种基于深度方法提取图片比较两幅图片相似度的方法,相比于传统使用的L2、SSIM等方法,LPIPS方法尝试解决在判断相似度时更符合人类的感知。如下图:


实际上,两张图片是否相似,这是一个比较主观的结果,从人类判断的角度上来看,甚至可能受到视觉上下文的影响,该方法尝试不使用人工的判断来训练一个贴近人类感官的相似度的概念。从前文来看,通过深层网络的内部激活(即便是在图片分类任务上训练的)在更广泛的数据集也是可以适用的,也更符合人类的判断。


相比于FID,LPIPS 也是利用深度卷积网络的内部激活,不同的是,LPIPS衡量的是感知相似性,而不是质量评估。


 总结


2016到2019期间,各家学者对生成图片度量的方法持续优化,基本上还是聚焦在“什么样的图片更贴近真实”,直到2018年,图片的真实性达到的一定水平,LPIPS提出对于图片的评价不仅局限于”有多真实“,同时关注到怎么样让图片效果更贴近人类的感官。


好的消费体验, 让商家更高效、低成本地经营。


什么样才算好图——从生图模型质量度量方法看模型能力的发展(下):https://developer.aliyun.com/article/1480482

目录
相关文章
|
7月前
|
机器学习/深度学习 人工智能 自动驾驶
Genie为何更贴近世界模型?
【2月更文挑战第14天】Genie为何更贴近世界模型?
55 2
Genie为何更贴近世界模型?
|
7月前
|
存储 计算机视觉 开发者
【mobileSam】使用大模型推理赋能标注工作,让标注工作不再困难
【mobileSam】使用大模型推理赋能标注工作,让标注工作不再困难
354 1
|
1天前
|
机器学习/深度学习 人工智能 调度
高效评估多模态预训练对齐质量,中科大提出模态融合率MIR
中国科学技术大学研究团队提出了一种新的评估指标——模态融合率(MIR),用于评估多模态预训练模型的对齐质量。MIR通过衡量不同模态之间的分布距离,有效反映了模型的对齐质量,并在多种训练配置下表现出良好的鲁棒性和通用性。实验结果表明,MIR能够准确评估训练数据选择、训练策略调度和模型架构设计对预训练结果的影响,为多模态学习提供了可靠的方法。
25 22
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
NeurIPS 2024:真实世界复杂任务,全新基准GTA助力大模型工具调用能力评测
在NeurIPS 2024会议上,GTA(General Tool Agents Benchmark)基准测试被提出,旨在评估大型语言模型(LLM)在真实世界复杂任务中的工具调用能力。GTA采用真实用户查询、真实部署工具和多模态输入,全面评估LLM的推理和执行能力。结果显示,现有LLM在真实世界任务中仍面临巨大挑战,为未来研究提供了重要方向。
21 13
|
1月前
|
机器学习/深度学习 人工智能
大模型合成数据机理分析,人大刘勇团队:信息增益影响泛化能力
中国人民大学刘勇团队研究了合成数据对大型语言模型泛化能力的影响,提出逆瓶颈视角,通过“通过互信息的泛化增益”(GGMI)概念,揭示了后训练模型的泛化能力主要取决于从生成模型中获得的信息增益。这一发现为优化合成数据生成和后训练过程提供了重要理论依据。
54 1
|
1月前
|
人工智能 自然语言处理 测试技术
文生图参数量升至240亿!Playground v3发布:深度融合LLM,图形设计能力超越人类
【10月更文挑战第29天】Playground v3(PGv3)是最新发布的文本到图像生成模型,其在多个测试基准上取得了最先进的性能。与传统模型不同,PGv3采用了一种全新的结构,将大型语言模型与图像生成模型深度融合,展现出卓越的文本提示遵循、复杂推理和准确的文本渲染能力。此外,PGv3还具备超越人类的图形设计能力,支持精确的RGB颜色控制和多语言理解,为设计师和创意工作者提供了强大的工具。尽管存在一些挑战,但PGv3的发布标志着文本到图像生成技术的重大突破。
40 6
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
扩散引导语言建模(DGLM):一种可控且高效的AI对齐方法
DGLM(Diffusion Guided Language Modeling)是一种新型框架,结合了自回归模型的流畅性和扩散模型的灵活性,解决了现有引导生成方法的局限性。DGLM通过扩散网络生成语义提案,并使用轻量级提示生成器将嵌入转化为软提示,引导自回归解码器生成文本。该方法无需微调模型权重,易于控制新属性,并在多个基准数据集上表现出色。实验结果显示,DGLM在毒性缓解、情感控制和组合控制等方面优于现有方法,为可控文本生成提供了新的方向。
54 10
扩散引导语言建模(DGLM):一种可控且高效的AI对齐方法
|
7月前
|
人工智能 搜索推荐 测试技术
让智能体像孩子一样观察别人学习动作,跨视角技能学习数据集EgoExoLearn来了
【4月更文挑战第11天】EgoExoLearn是一个大规模数据集,用于模拟人类通过观察视频学习任务的能力,包含120小时的日常生活和实验室场景视频,重点是第一人称视角和注视数据。该数据集提供多模态注释,设有跨视角动作理解等基准测试,旨在推动AI模仿人类行为的研究。尽管有挑战,如视角转换和多样性问题,但EgoExoLearn为AI学习和融入人类环境开辟了新途径。
66 1
让智能体像孩子一样观察别人学习动作,跨视角技能学习数据集EgoExoLearn来了
|
7月前
|
机器学习/深度学习 编解码 人工智能
什么样才算好图——从生图模型质量度量方法看模型能力的发展(下)
什么样才算好图——从生图模型质量度量方法看模型能力的发展(下)
342 1
|
7月前
|
机器学习/深度学习 人工智能 缓存
Contextual发布生成式表征指导调整模型
【2月更文挑战第17天】Contextual发布生成式表征指导调整模型
138 1
Contextual发布生成式表征指导调整模型
下一篇
DataWorks