合理的使⽤Java多线程可以更好地利⽤服务器资源。⼀般来讲,线程内部有⾃⼰私 有的线程上下⽂,互不⼲扰。但是当我们需要多个线程之间相互协作的时候,就需 要我们掌握Java线程的通信⽅式。本⽂将介绍Java线程之间的⼏种通信原理。
一、锁与同步
在Java中,锁的概念都是基于对象的,所以我们⼜经常称它为对象锁。线程和锁的 关系,我们可以⽤婚姻关系来理解。⼀个锁同⼀时间只能被⼀个线程持有。也就是 说,⼀个锁如果和⼀个线程“结婚”(持有),那其他线程如果需要得到这个锁,就 得等这个线程和这个锁“离婚”(释放)。
在我们的线程之间,有⼀个同步的概念。什么是同步呢,假如我们现在有2位正在 抄暑假作业答案的同学:线程A和线程B。当他们正在抄的时候,⽼师突然来修改 了⼀些答案,可能A和B最后写出的暑假作业就不⼀样。我们为了A,B能写出2本相 同的暑假作业,我们就需要让⽼师先修改答案,然后A,B同学再抄。或者A,B同 学先抄完,⽼师再修改答案。这就是线程A,线程B的线程同步。 可以以解释为:线程同步是线程之间按照⼀定的顺序执⾏。
为了达到线程同步,我们可以使⽤锁来实现它。 我们先来看看⼀个⽆锁的程序:
public class NoneLock { static class ThreadA implements Runnable { @Override public void run() { for (int i = 0; i < 100; i++) { System.out.println("Thread A " + i); } } } static class ThreadB implements Runnable { @Override public void run() { for (int i = 0; i < 100; i++) { System.out.println("Thread B " + i); } } } public static void main(String[] args) { new Thread(new ThreadA()).start(); new Thread(new ThreadB()).start(); } }
执⾏这个程序,你会在控制台看到,线程A和线程B各⾃独⽴⼯作,输出⾃⼰的打 印值。如下是我的电脑上某⼀次运⾏的结果。每⼀次运⾏结果都会不⼀样。
想等A先执⾏完之后,再由B去执⾏,怎么办呢?最简单 的⽅式就是使⽤⼀个“对象锁”:
public class ObjectLock { private static Object lock = new Object(); static class ThreadA implements Runnable { @Override public void run() { synchronized (lock) { for (int i = 0; i < 100; i++) { System.out.println("Thread A " + i); } } } } static class ThreadB implements Runnable { @Override public void run() { synchronized (lock) { for (int i = 0; i < 100; i++) { System.out.println("Thread B " + i); } } } } public static void main(String[] args) throws InterruptedException { new Thread(new ThreadA()).start(); Thread.sleep(10); new Thread(new ThreadB()).start(); } }
这⾥声明了⼀个名字为 lock 的对象锁。我们在 ThreadA 和 ThreadB 内需要同步的 代码块⾥,都是⽤ synchronized 关键字加上了同⼀个对象锁 lock 。 上⽂我们说到了,根据线程和锁的关系,同⼀时间只有⼀个线程持有⼀个锁,那么 线程B就会等线程A执⾏完成后释放 lock ,线程B才能获得锁 lock 。
注 : 这⾥在主线程⾥使⽤sleep⽅法睡眠了10毫秒,是为了防⽌线程B先得到锁。 因为如果同时start,线程A和线程B都是出于就绪状态,操作系统可能会先让 B运⾏。这样就会先输出B的内容,然后B执⾏完成之后⾃动释放锁,线程A 再执⾏。
二、等待/通知机制
上⾯⼀种基于“锁”的⽅式,线程需要不断地去尝试获得锁,如果失败了,再继续尝 试。这可能会耗费服务器资源。 ⽽等待/通知机制是另⼀种⽅式。 Java多线程的等待/通知机制是基于 Object 类的 wait() ⽅法和 notify() , notifyAll() ⽅法来实现的。
notify()⽅法会随机叫醒⼀个正在等待的线程,⽽notifyAll()会叫醒所有正在等 待的线程。
前⾯我们讲到,⼀个锁同⼀时刻只能被⼀个线程持有。⽽假如线程A现在持有了⼀ 个锁 lock 并开始执⾏,它可以使⽤ lock.wait() 让⾃⼰进⼊等待状态。这个时 候, lock 这个锁是被释放了的。 这时,线程B获得了 lock 这个锁并开始执⾏,它可以在某⼀时刻,使 ⽤ lock.notify() ,通知之前持有 lock 锁并进⼊等待状态的线程A,说“线程A你不 ⽤等了,可以往下执⾏了”。
需要注意的是,这个时候线程B并没有释放锁 lock ,除⾮线程B这个时候使 ⽤ lock.wait() 释放锁,或者线程B执⾏结束⾃⾏释放锁,线程A才能得 到 lock 锁。
public class WaitAndNotify { private static Object lock = new Object(); static class ThreadA implements Runnable { @Override public void run() { synchronized (lock) { for (int i = 0; i < 5; i++) { try { System.out.println("ThreadA: " + i); lock.notify(); lock.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } lock.notify(); } } } static class ThreadB implements Runnable { @Override public void run() { synchronized (lock) { for (int i = 0; i < 5; i++) { try { System.out.println("ThreadB: " + i); lock.notify(); lock.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } lock.notify(); } } } public static void main(String[] args) throws InterruptedException { new Thread(new ThreadA()).start(); Thread.sleep(1000); new Thread(new ThreadB()).start(); } }
结果
ThreadA: 0
ThreadB: 0
ThreadA: 1
ThreadB: 1
ThreadA: 2
ThreadB: 2
ThreadA: 3
ThreadB: 3
ThreadA: 4
ThreadB: 4
在这个Demo⾥,线程A和线程B⾸先打印出⾃⼰需要的东⻄,然后使 ⽤ notify() ⽅法叫醒另⼀个正在等待的线程,然后⾃⼰使⽤ wait() ⽅法陷⼊等待 并释放 lock 锁。
需要注意的是等待/通知机制使⽤的是使⽤同⼀个对象锁,如果你两个线程使 ⽤的是不同的对象锁,那它们之间是不能⽤等待/通知机制通信的
三、信号量
JDK提供了⼀个类似于“信号量”功能的类 Semaphore 。但本⽂不是要介绍这个类,后⾯会有专⻔的章节介绍 Semaphore, ⽽是介绍⼀种基于 volatile 关键字的⾃⼰实现的信号量通信。
volitile关键字能够保证内存的可⻅性,如果⽤volitile关键字声明了⼀个变 量,在⼀个线程⾥⾯改变了这个变量的值,那其它线程是⽴⻢可⻅更改后的 值的
⽐如我现在有⼀个需求,我想让线程A输出0,然后线程B输出1,再然后线程A输出 2…以此类推。我应该怎样实现呢?
public class Signal { private static volatile int signal = 0; static class ThreadA implements Runnable { @Override public void run() { while (signal < 5) { if (signal % 2 == 0) { System.out.println("threadA: " + signal); synchronized (this) { signal++; } } } } } static class ThreadB implements Runnable { @Override public void run() { while (signal < 5) { if (signal % 2 == 1) { System.out.println("threadB: " + signal); synchronized (this) { signal = signal + 1; } } } } } public static void main(String[] args) throws InterruptedException { new Thread(new ThreadA()).start(); Thread.sleep(1000); new Thread(new ThreadB()).start(); } }
我们可以看到,使⽤了⼀个 volatile 变量 signal 来实现了“信号量”的模型。这⾥ 需要注意的是, volatile 变量需要进⾏原⼦操作。 signal++ 并不是⼀个原⼦操 作,所以我们需要使⽤ synchronized 给它“上锁”。
这种实现⽅式并不⼀定⾼效,本例只是演示信号量
信号量的应⽤场景:
假如在⼀个停⻋场中,⻋位是我们的公共资源,线程就如同⻋辆,⽽看⻔的管理员 就是起的“信号量”的作⽤。 因为在这种场景下,多个线程(超过2个)需要相互合作,我们⽤简单的“锁”和“等 待通知机制”就不那么⽅便了。这个时候就可以⽤到信号量。 其实JDK中提供的很多多线程通信⼯具类都是基于信号量模型的
四、管道
管道是基于“管道流”的通信⽅式。JDK提供了 PipedWriter 、 PipedReader 、 PipedOutputStream 、 PipedInputStream 。其中,前⾯两个是基于字符的,后⾯两 个是基于字节流的。 这⾥的示例代码使⽤的是基于字符的:
public class Pipe { static class ReaderThread implements Runnable { private PipedReader reader; public ReaderThread(PipedReader reader) { this.reader = reader; } @Override public void run() { System.out.println("this is reader"); int receive = 0; try { while ((receive = reader.read()) != -1) { System.out.print((char) receive); } } catch (IOException e) { e.printStackTrace(); } } } static class WriterThread implements Runnable { private PipedWriter writer; public WriterThread(PipedWriter writer) { this.writer = writer; } @Override public void run() { System.out.println("this is writer"); int receive = 0; try { writer.write("test"); } catch (IOException e) { e.printStackTrace(); } finally { try { writer.close(); } catch (IOException e) { e.printStackTrace(); } } } } public static void main(String[] args) throws IOException, InterruptedException { PipedWriter writer = new PipedWriter(); PipedReader reader = new PipedReader(); writer.connect(reader); // 这⾥注意⼀定要连接,才能通信 new Thread(new ReaderThread(reader)).start(); Thread.sleep(1000); new Thread(new WriterThread(writer)).start(); } }
输出
this is reader
this is writer
test
我们通过线程的构造函数,传⼊了 PipedWrite 和 PipedReader 对象。可以简单分析 ⼀下这个示例代码的执⾏流程:
1. 线程ReaderThread开始执⾏,
2. 线程ReaderThread使⽤管道reader.read()进⼊”阻塞“,
3. 线程WriterThread开始执⾏,
4. 线程WriterThread⽤writer.write("test")往管道写⼊字符串,
5. 线程WriterThread使⽤writer.close()结束管道写⼊,并执⾏完毕,
6. 线程ReaderThread接受到管道输出的字符串并打印,
7. 线程ReaderThread执⾏完毕。
管道通信的应⽤场景: 这个很好理解。使⽤管道多半与I/O流相关。当我们⼀个线程需要先另⼀个线程发 送⼀个信息(⽐如字符串)或者⽂件等等时,就需要使⽤管道通信了。
五、其他通信
以上介绍了⼀些线程间通信的基本原理和⽅法。除此以外,还有⼀些与线程通信相 关的知识点,这⾥⼀并介绍
1、join方法
join()⽅法是Thread类的⼀个实例⽅法。它的作⽤是让当前线程陷⼊“等待”状态,等 join的这个线程执⾏完成后,再继续执⾏当前线程。 有时候,主线程创建并启动了⼦线程,如果⼦线程中需要进⾏⼤量的耗时运算,主 线程往往将早于⼦线程结束之前结束。 如果主线程想等待⼦线程执⾏完毕后,获得⼦线程中的处理完的某个数据,就要⽤ 到join⽅法了。
示例代码:
public class Join { static class ThreadA implements Runnable { @Override public void run() { try { System.out.println("我是⼦线程,我先睡⼀秒"); Thread.sleep(1000); System.out.println("我是⼦线程,我睡完了⼀秒"); } catch (InterruptedException e) { e.printStackTrace(); } } } public static void main(String[] args) throws InterruptedException { Thread thread = new Thread(new ThreadA()); thread.start(); thread.join(); System.out.println("如果不加join⽅法,我会先被打出来,加了就不⼀样了"); } }
注意join()⽅法有两个重载⽅法,⼀个是join(long), ⼀个是join(long, int)。 实际上,通过源码你会发现,join()⽅法及其重载⽅法底层都是利⽤了 wait(long)这个⽅法。 对于join(long, int),通过查看源码(JDK 1.8)发现,底层并没有精确到纳秒, ⽽是对第⼆个参数做了简单的判断和处理。
2、sleep⽅法
sleep⽅法是Thread类的⼀个静态⽅法。它的作⽤是让当前线程睡眠⼀段时间。它 有这样两个⽅法:
- Thread.sleep(long)
- Thread.sleep(long, int)
同样,查看源码(JDK 1.8)发现,第⼆个⽅法貌似只对第⼆个参数做了简单的 处理,没有精确到纳秒。实际上还是调⽤的第⼀个⽅法。
这⾥需要强调⼀下:sleep⽅法是不会释放当前的锁的,⽽wait⽅法会。这也是最 常⻅的⼀个多线程⾯试题。
它们还有这些区别:
- wait可以指定时间,也可以不指定;⽽sleep必须指定时间。
- wait释放cpu资源,同时释放锁;sleep释放cpu资源,但是不释放锁,所以易 死锁。
- wait必须放在同步块或同步⽅法中,⽽sleep可以再任意位置
3、ThreadLocal
ThreadLocal是⼀个本地线程副本变量⼯具类。内部是⼀个弱引⽤的Map来维护,
有些朋友称ThreadLocal为线程本地变量或线程本地存储。严格来说,ThreadLocal 类并不属于多线程间的通信,⽽是让每个线程有⾃⼰”独⽴“的变量,线程之间互不 影响。它为每个线程都创建⼀个副本,每个线程可以访问⾃⼰内部的副本变量。 ThreadLocal类最常⽤的就是set⽅法和get⽅法。示例代码:
public class ThreadLocalDemo { static class ThreadA implements Runnable { private ThreadLocal<String> threadLocal; public ThreadA(ThreadLocal<String> threadLocal) { this.threadLocal = threadLocal; } @Override public void run() { threadLocal.set("A"); try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("ThreadA输出:" + threadLocal.get()); } static class ThreadB implements Runnable { private ThreadLocal<String> threadLocal; public ThreadB(ThreadLocal<String> threadLocal) { this.threadLocal = threadLocal; } @Override public void run() { threadLocal.set("B"); try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("ThreadB输出:" + threadLocal.get()); } } public static void main(String[] args) { ThreadLocal<String> threadLocal = new ThreadLocal<>(); new Thread(new ThreadA(threadLocal)).start(); new Thread(new ThreadB(threadLocal)).start(); } } }
可以看到,虽然两个线程使⽤的同⼀个ThreadLocal实例(通过构造⽅法传⼊), 但是它们各⾃可以存取⾃⼰当前线程的⼀个值。 那ThreadLocal有什么作⽤呢?如果只是单纯的想要线程隔离,在每个线程中声明 ⼀个私有变量就好了呀,为什么要使⽤ThreadLocal?
如果开发者希望将类的某个静态变量(user ID或者transaction ID)与线程状态关 联,则可以考虑使⽤ThreadLocal。 最常⻅的ThreadLocal使⽤场景为⽤来解决数据库连接、Session管理等。数据库连 接和Session管理涉及多个复杂对象的初始化和关闭。如果在每个线程中声明⼀些 私有变量来进⾏操作,那这个线程就变得不那么“轻量”了,需要频繁的创建和关闭 连接。
InheritableThreadLocal类与ThreadLocal类稍有不同,Inheritable是继承的意思。 它不仅仅是当前线程可以存取副本值,⽽且它的⼦线程也可以存取这个副本值。
关于ThreadLocal、InheritThreadLocal、TransmittableThreadLocal使用详细文章
ThreadLocal、InheritThreadLocal、TransmittableThreadLocal_herithreadlocal