轻松入门MySQL:精准查询,巧用WHERE与HAVING,数据库查询如虎添翼(7)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 轻松入门MySQL:精准查询,巧用WHERE与HAVING,数据库查询如虎添翼(7)

在进行数据库查询时,经常需要使用条件语句 WHEREHAVING 进行结果筛选。WHERE 用于直接对表字段进行限定,而 HAVING 需要与分组关键字 GROUP BY 结合使用,通过对分组字段或分组计算函数进行限定。在实际项目中,选择正确的条件语句是确保查询准确、资源占用少、速度更快的关键。

查询需求

在我们的进销存数据库中:查询单笔销售金额超过2000元的产品。这需要使用 WHEREHAVING 进行筛选。

假设有一个产品信息表 product_info 包含两种产品:手机和电视,以及一个产品销售明细表 sales_details 包含四条销售记录。

接下来,我们将使用 WHEREHAVING 分别进行查询,以了解它们的特点和优缺点。

使用 WHERE 进行查询

SELECT product_name
FROM sales_details AS a
JOIN product_info AS b ON a.product_id = b.product_id
WHERE a.sales_amount > 2000;

这样的查询直接对数据集进行筛选,通过条件 a.sales_amount > 2000 获取销售金额超过2000元的产品。

使用 HAVING 进行查询

SELECT b.product_name
FROM sales_details AS a
JOIN product_info AS b ON a.product_id = b.product_id
GROUP BY b.product_name
HAVING MAX(a.sales_amount) > 2000;

这种查询需要先使用 GROUP BY 对数据进行分组,然后通过 HAVING 对分组后的结果集进行筛选,确保销售金额超过2000元。

WHERE 和 HAVING 的执行过程

WHERE

  1. MySQL 从表 sales_details 中抽取满足条件 a.sales_amount > 2000 的记录。
  2. 通过公共字段 product_id 与表 product_info 进行关联,获取产品名称。
  3. 使用 DISTINCT 消除重复的记录。
  4. 得到销售金额超过2000元的产品。

HAVING

  1. 对产品销售明细表和产品信息表通过公共字段 product_id 进行连接,获取数据。
  2. 按产品名称分组,形成分组后的数据集。
  3. 对分组后的数据集筛选,保留销售金额的最大值大于2000的组。
  4. 返回产品名称,得到销售金额超过2000元的产品。

WHERE 和 HAVING 的优缺点

特点 WHERE HAVING
优点 先筛选数据再连接,执行效率高 可以使用分组中的计算函数进行筛选
缺点 不能使用分组中的计算函数进行筛选 在最后的结果集中进行筛选,执行效率较低

如何正确使用 WHERE 和 HAVING

  1. 了解它们的典型区别,特别是在关联查询中,WHERE 比 HAVING 更高效。
  2. WHERE 可以直接使用表中的字段作为筛选条件,但不能使用分组中的计算函数。HAVING 必须与 GROUP BY 配合使用。
  3. 在需要对数据进行分组统计时,使用 HAVING 完成 WHERE 不能完成的任务。

示例查询

假设有一个新的查询任务:查询销售金额超过1000元的产品的销售日期、产品名称、销售数量和销售金额。

SELECT
    a.sales_date,
    d.product_name,
    b.quantity,
    b.unit_price,
    b.sales_amount
FROM
    sales AS a
JOIN
    sales_details AS b ON a.sales_id = b.sales_id
JOIN
    products AS d ON b.product_id = d.product_id
WHERE
    a.sales_date IN ('2023-10-10', '2023-12-31')
    AND b.sales_amount > 1000;

这个查询通过连接销售表(sales)、销售明细表(sales_details)和产品表(products),获取符合条件的销售记录。然后使用 WHERE 条件限制销售日期在指定日期范围内,并筛选销售金额超过1000元的产品。

这个查询既利用了 WHERE 条件的高效快速,又发挥了 HAVING 可以使用包含分组统计函数的查询条件的优点。

如何正确使用 WHERE 和 HAVING:更多建议

  1. 灵活运用 WHERE 条件
  • WHERE 条件适用于对单行数据进行筛选,可以根据具体需求构建多种条件组合,例如范围查询、模糊查询等。
  1. 合理使用 HAVING 条件
  • HAVING 条件适用于对分组后的数据进行聚合结果的筛选,例如筛选分组后的最大值、最小值等情况。
  1. 注意性能优化
  • 在大数据量的情况下,尽量在 WHERE 条件中完成对数据集的筛选,以提高查询效率。
  1. 善用索引
  • 对于经常用于查询条件的字段,可以考虑添加索引,以加快查询速度。
  1. 保持查询简洁
  • 在编写查询语句时,尽量保持简洁清晰,避免过度复

杂的逻辑,有助于提高代码的可读性和维护性。

通过合理地使用 WHERE 和 HAVING 条件,并结合上述更多的建议,可以更加高效地进行数据库查询,提升查询效率和开发效率。

总结

通过了解 WHERE 和 HAVING 的执行原理和特点,以及更多的使用建议和实际场景说明,我们可以在查询中充分利用它们的优势,更高效地实现我们的查询目标。在处理复杂的统计查询时,HAVING 尤为有用,因为它能轻松应对分组统计的需求,提高查询的灵活性和效率。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
28天前
|
人工智能 运维 关系型数据库
数据库运维:mysql 数据库迁移方法-mysqldump
本文介绍了MySQL数据库迁移的方法与技巧,重点探讨了数据量大小对迁移方式的影响。对于10GB以下的小型数据库,推荐使用mysqldump进行逻辑导出和source导入;10GB以上可考虑mydumper与myloader工具;100GB以上则建议物理迁移。文中还提供了统计数据库及表空间大小的SQL语句,并讲解了如何使用mysqldump导出存储过程、函数和数据结构。通过结合实际应用场景选择合适的工具与方法,可实现高效的数据迁移。
234 1
|
3天前
|
SQL 存储 关系型数据库
MySQL功能模块探秘:数据库世界的奇妙之旅
]带你轻松愉快地探索MySQL 8.4.5的核心功能模块,从SQL引擎到存储引擎,从复制机制到插件系统,让你在欢声笑语中掌握数据库的精髓!
49 26
|
24天前
|
SQL 关系型数据库 MySQL
Go语言数据库编程:使用 `database/sql` 与 MySQL/PostgreSQL
Go语言通过`database/sql`标准库提供统一数据库操作接口,支持MySQL、PostgreSQL等多种数据库。本文介绍了驱动安装、连接数据库、基本增删改查操作、预处理语句、事务处理及错误管理等内容,涵盖实际开发中常用的技巧与注意事项,适合快速掌握Go语言数据库编程基础。
110 62
|
2月前
|
存储 关系型数据库 MySQL
【赵渝强老师】OceanBase数据库从零开始:MySQL模式
《OceanBase数据库从零开始:MySQL模式》是一门包含11章的课程,涵盖OceanBase分布式数据库的核心内容。从体系架构、安装部署到租户管理、用户安全,再到数据库对象操作、事务与锁机制,以及应用程序开发、备份恢复、数据迁移等方面进行详细讲解。此外,还涉及连接路由管理和监控诊断等高级主题,帮助学员全面掌握OceanBase数据库的使用与管理。
181 5
|
2月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
4月前
|
关系型数据库 MySQL Java
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
|
2月前
|
存储 关系型数据库 MySQL
大数据新视界 --面向数据分析师的大数据大厂之 MySQL 基础秘籍:轻松创建数据库与表,踏入大数据殿堂
本文详细介绍了在 MySQL 中创建数据库和表的方法。包括安装 MySQL、用命令行和图形化工具创建数据库、选择数据库、创建表(含数据类型介绍与选择建议、案例分析、最佳实践与注意事项)以及查看数据库和表的内容。文章专业、严谨且具可操作性,对数据管理有实际帮助。
大数据新视界 --面向数据分析师的大数据大厂之 MySQL 基础秘籍:轻松创建数据库与表,踏入大数据殿堂
|
2月前
|
SQL 关系型数据库 MySQL
MySQL下载安装全攻略!小白也能轻松上手,从此数据库不再难搞!
这是一份详细的MySQL安装与配置教程,适合初学者快速上手。内容涵盖从下载到安装的每一步操作,包括选择版本、设置路径、配置端口及密码等。同时提供基础操作指南,如数据库管理、数据表增删改查、用户权限设置等。还介绍了备份恢复、图形化工具使用和性能优化技巧,帮助用户全面掌握MySQL的使用方法。附带常见问题解决方法,保姆级教学让你无忧入门!
MySQL下载安装全攻略!小白也能轻松上手,从此数据库不再难搞!
|
4月前
|
关系型数据库 MySQL 数据库连接
docker拉取MySQL后数据库连接失败解决方案
通过以上方法,可以解决Docker中拉取MySQL镜像后数据库连接失败的常见问题。关键步骤包括确保容器正确启动、配置正确的环境变量、合理设置网络和权限,以及检查主机防火墙设置等。通过逐步排查,可以快速定位并解决连接问题,确保MySQL服务的正常使用。
677 82
|
2月前
|
关系型数据库 MySQL 定位技术
MySQL与Clickhouse数据库:探讨日期和时间的加法运算。
这一次的冒险就到这儿,期待你的再次加入,我们一起在数据库的世界中找寻下一个宝藏。
89 9

推荐镜像

更多