MySQL 查询优化:提速查询效率的13大秘籍(索引设计、查询优化、缓存策略、子查询优化以及定期表分析和优化)(中)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: MySQL 查询优化:提速查询效率的13大秘籍(索引设计、查询优化、缓存策略、子查询优化以及定期表分析和优化)(中)

MySQL数据库是众多应用的核心,提升其性能关系到整个系统的效率。本文是13个优化mysql查询的秘诀的第二篇文章,本文将分享5个精炼而实用的MySQL性能优化技巧,涵盖了关键的索引设计、查询优化、缓存策略、子查询优化以及定期表分析和优化。

分页查询优化

分页查询是应用程序中常见的需求,但在大数据集上使用LIMITOFFSET可能会导致性能下降。以下是一些优化建议以及相关的代码和表格:

  1. 使用LIMITOFFSET的传统分页:
-- 传统分页方式
SELECT * FROM products ORDER BY product_id LIMIT 10 OFFSET 20;
  1. 使用OFFSET会导致数据库跳过前面的 20 条记录,这在大数据集上会很慢,特别是当OFFSET的值很大时。
  2. 游标分页或基于游标的分页:
    游标分页是通过记录上一页的最后一条记录的唯一标识(例如主键)来获取下一页的数据。这种方法避免了OFFSET的性能问题。
-- 游标分页方式
SELECT * FROM products WHERE product_id > last_id ORDER BY product_id LIMIT 10;
  1. 其中,last_id是上一页结果集的最后一条记录的唯一标识。
  2. 性能优化建议:
  • 避免大偏移量: 尽量避免在大数据集上使用大的OFFSET值,因为这会导致数据库跳过大量的记录。
  • 索引优化: 确保排序和分页字段上存在索引,以提高查询性能。
  • 基于游标的分页: 考虑使用基于游标的分页方法,它对大数据集上的分页效率更高。
  • 缓存查询结果: 如果可能,可以考虑在应用层面缓存查询结果,以减少数据库的访问。

游标分页查询代码示例:

def get_products_page(last_id, limit=10):
    query = f"SELECT * FROM products WHERE product_id > {last_id} ORDER BY product_id LIMIT {limit};"
    # 执行查询并返回结果
    return execute_query(query)

上述代码是一个简单的示例,实际实现可能会因应用框架和语言的不同而有所调整。此方法在大数据集上的性能更好,因为它避免了OFFSET的问题。

合理使用连接(JOIN)

在MySQL中,连接(JOIN)是将两个或多个表的数据关联起来的一种操作,它在处理复杂查询和关联数据时起到关键作用。然而,在进行连接操作时,需要谨慎地选择连接类型、了解表之间的关系,并确保适当的索引存在,以提高连接性能。

1. 选择连接类型:

  • INNER JOIN: 返回两个表中满足连接条件的行。它是最常用的连接类型,只返回符合条件的匹配行。
  • LEFT JOIN(或LEFT OUTER JOIN): 返回左表中所有的行,以及右表中满足连接条件的行。如果右表中没有匹配的行,结果集中将包含NULL值。
  • RIGHT JOIN(或RIGHT OUTER JOIN): 与LEFT JOIN相反,返回右表中所有的行,以及左表中满足连接条件的行。
  • FULL JOIN(或FULL OUTER JOIN): 返回左右两表中所有的行,对于没有匹配的行,将填充NULL值。

2. 确保适当的索引:

在进行连接操作时,存在适当的索引是提高性能的关键。连接条件中的字段,特别是经常被用于连接的字段,应该建立索引。这有助于数据库引擎更快速地定位和匹配行。

示例代码:

假设我们有两个表:users 表和 orders 表,它们通过 user_id 字段进行连接。

CREATE TABLE users (
    user_id INT PRIMARY KEY,
    username VARCHAR(255),
    email VARCHAR(255)
);
CREATE TABLE orders (
    order_id INT PRIMARY KEY,
    user_id INT,
    order_date DATE,
    total_amount DECIMAL(10, 2),
    FOREIGN KEY (user_id) REFERENCES users(user_id)
);

INNER JOIN示例:

SELECT users.user_id, username, order_id, order_date, total_amount
FROM users
INNER JOIN orders ON users.user_id = orders.user_id;

LEFT JOIN示例:

SELECT users.user_id, username, order_id, order_date, total_amount
FROM users
LEFT JOIN orders ON users.user_id = orders.user_id;

3. 避免不必要的连接:

不必要的连接会导致查询性能下降。在设计表结构时,考虑表之间的关系,只连接那些确实需要关联的表,避免多余的连接操作。

表格:

users orders
user_id username order_id user_id
1 Alice 101 1
2 Bob 102 2
3 Charlie 103 1

在表格中,users 表通过 user_idorders 表进行连接。连接时,确保 user_id 字段在两个表中都建有索引,以提高连接性能。避免连接不必要的表,只关联对查询有实际用处的数据。

适当的缓存策略

MySQL的查询缓存机制可以通过合理使用来提高查询速度。该机制会缓存查询和对应的结果,当相同的查询再次执行时,MySQL可以直接返回缓存中的结果,而不必再次执行查询。然而,查询缓存的使用需要慎重考虑,因为对于经常更新的表,缓存可能会导致性能问题。

以下是详细解释和示例:

  1. 启用/禁用查询缓存:
  • 查询缓存默认是启用的,但在某些情况下,特别是对于经常更新的表,可能需要禁用查询缓存。可以通过在MySQL配置文件中设置query_cache_type来禁用查询缓存:
query_cache_type = 0
  • 或者在运行时通过以下语句禁用查询缓存:
SET SESSION query_cache_type = OFF;
  1. 清空查询缓存:
  • 如果在运行时需要清空查询缓存,可以使用以下语句:
RESET QUERY CACHE;
  1. 查询缓存的限制:
  • 查询缓存的效果在某些情况下可能并不显著,因为它有一些限制。例如,如果查询中包含了不稳定的函数(如NOW()),或者表中发生了更新,缓存就会失效。因此,在使用查询缓存时,需要注意查询的稳定性和缓存的有效性。

示例表格: 假设有一个用户表(users),结构如下:

CREATE TABLE users (
    id INT PRIMARY KEY,
    username VARCHAR(50),
    email VARCHAR(100)
);

在这个表上启用和禁用查询缓存的例子:

-- 启用查询缓存
SET SESSION query_cache_type = ON;
-- 执行查询
SELECT * FROM users WHERE id = 1;
-- 禁用查询缓存
SET SESSION query_cache_type = OFF;
-- 执行查询(不会被缓存)
SELECT * FROM users WHERE id = 2;

需要根据具体的业务需求和表的更新频率来确定是否使用查询缓存以及何时禁用它。在某些情况下,通过其他手段如使用索引、优化查询等方式可能比使用查询缓存更为有效。

子查询优化

子查询优化是提高数据库查询性能的关键方面之一。过深或过多的子查询可能导致性能下降,因此有时候可以通过改写为连接查询来优化查询。下面是详细解释和示例:

1. 避免过深的子查询:

  • 当一个查询中嵌套了多层子查询时,数据库可能需要多次执行查询操作,导致性能下降。尽量减少子查询的层数,考虑使用其他手段来优化查询。

2. 避免过多的子查询:

  • 过多的子查询也可能导致性能问题。在一些情况下,可以将多个子查询合并或优化为更简洁的形式,以降低查询的复杂度。

3. 将子查询改写为连接查询:

  • 使用连接查询(JOIN)可以是查询更为高效,尤其是在某些情况下。连接查询的性能通常比子查询好,因为连接操作是数据库优化器的一个重点优化对象。

下面是一个简单的例子:

假设有两个表,一个存储用户信息(users),另一个存储订单信息(orders):

CREATE TABLE users (
    user_id INT PRIMARY KEY,
    username VARCHAR(50),
    email VARCHAR(100)
);
CREATE TABLE orders (
    order_id INT PRIMARY KEY,
    user_id INT,
    total_amount DECIMAL(10, 2),
    order_date DATE,
    FOREIGN KEY (user_id) REFERENCES users(user_id)
);
INSERT INTO users VALUES (1, 'user1', 'user1@example.com');
INSERT INTO users VALUES (2, 'user2', 'user2@example.com');
INSERT INTO orders VALUES (101, 1, 50.00, '2022-01-01');
INSERT INTO orders VALUES (102, 1, 30.00, '2022-01-02');
INSERT INTO orders VALUES (103, 2, 25.00, '2022-01-02');

原始子查询示例:

-- 查询每个用户的订单总金额
SELECT u.username, 
       (SELECT SUM(o.total_amount) FROM orders o WHERE o.user_id = u.user_id) AS total_amount
FROM users u;

优化为连接查询:

-- 使用连接查询获取每个用户的订单总金额
SELECT u.username, SUM(o.total_amount) AS total_amount
FROM users u
JOIN orders o ON u.user_id = o.user_id
GROUP BY u.username;

在这个例子中,原始子查询通过嵌套查询来获取每个用户的订单总金额。优化后的查询使用连接查询和聚合函数,可以更为高效地获得相同的结果。在实际应用中,优化效果可能因表的结构和数据量而异,因此需要根据具体情况选择最合适的查询方式。

定期分析表和优化表

MySQL的ANALYZE TABLEOPTIMIZE TABLE命令用于定期分析表和优化表,从而提高查询性能和释放磁盘空间。这对于频繁更新或删除的表格尤其重要,因为这些操作可能导致表的碎片化和索引失效。

1. ANALYZE TABLE:

ANALYZE TABLE命令用于分析表的索引统计信息,使优化器能够更好地选择查询执行计划。该命令不会锁定表,并且可以在线执行。

ANALYZE TABLE your_table_name;

例如:

ANALYZE TABLE orders;

2. OPTIMIZE TABLE:

OPTIMIZE TABLE命令用于优化表,包括重建表、释放碎片空间和重新排序索引。这对于删除大量数据后释放磁盘空间和提高查询性能很有帮助。但需要注意,OPTIMIZE TABLE可能会锁定表,在执行期间可能会导致表不可用。

OPTIMIZE TABLE your_table_name;

例如:

OPTIMIZE TABLE orders;

示例说明:

考虑一个简单的订单表:

CREATE TABLE orders (
    order_id INT PRIMARY KEY,
    user_id INT,
    total_amount DECIMAL(10, 2),
    order_date DATE,
    INDEX (user_id)
);

假设这个表经常发生插入、更新和删除操作,可能会导致表的碎片化。在这种情况下,定期执行ANALYZE TABLEOPTIMIZE TABLE可以提高查询性能和释放磁盘空间。

定期执行:

-- 定期分析表
ANALYZE TABLE orders;
-- 定期优化表
OPTIMIZE TABLE orders;

这样的操作可以放入定期维护脚本中,以确保表的性能和空间利用得到有效的管理。注意,在生产环境中执行OPTIMIZE TABLE时要格外小心,以避免对数据库性能造成不必要的影响。

走进MySQL的性能优化之路,让数据库不再是性能的瓶颈。从优雅的索引设计到精准的查询优化,再到巧妙的缓存策略,您已经掌握了提升数据库效能的关键武器。尽情挖掘这些技巧的潜力,让您的MySQL在高速运转中展现出最耀眼的光芒。优化不仅仅是一种技术,更是您数据库管理之路的精彩冒险。驾驭这些技巧,让MySQL成为您数据世界中的强大引擎,开启高性能数据库的新篇章!

相关实践学习
基于CentOS快速搭建LAMP环境
本教程介绍如何搭建LAMP环境,其中LAMP分别代表Linux、Apache、MySQL和PHP。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
10天前
|
SQL 存储 关系型数据库
Mysql优化提高笔记整理,来自于一位鹅厂大佬的笔记,阿里P7亲自教你
Mysql优化提高笔记整理,来自于一位鹅厂大佬的笔记,阿里P7亲自教你
|
1天前
|
SQL 缓存 关系型数据库
下次老板问你MySQL如何优化时,你可以这样说,老板默默给你加工资
【5月更文挑战第20天】下次老板问你MySQL如何优化时,你可以这样说,老板默默给你加工资
20 3
|
4天前
|
缓存 关系型数据库 MySQL
如何优化MySQL性能?
【5月更文挑战第23天】如何优化MySQL性能?
10 1
|
5天前
|
SQL 存储 关系型数据库
MySQL怎样优化千万级数据
MySQL在处理千万级数据时可能存在性能挑战。本文介绍了几个优化策略来改善查询效率
100 2
|
10天前
|
存储 缓存 监控
中间件Read-Through Cache(直读缓存)策略实现方式
【5月更文挑战第11天】中间件Read-Through Cache(直读缓存)策略实现方式
19 4
中间件Read-Through Cache(直读缓存)策略实现方式
|
10天前
|
存储 缓存 监控
中间件Read-Through Cache(直读缓存)策略注意事项
【5月更文挑战第11天】中间件Read-Through Cache(直读缓存)策略注意事项
14 2
|
10天前
|
存储 缓存 中间件
中间件Read-Through Cache(直读缓存)策略工作原理
【5月更文挑战第11天】中间件Read-Through Cache(直读缓存)策略工作原理
15 3
|
10天前
|
缓存 关系型数据库 MySQL
如何优化MySQL数据库查询性能
MySQL是一款常用的关系型数据库,但在实际使用过程中,由于数据量增加和查询操作复杂度增加,会导致查询性能下降。本文将介绍一些优化MySQL数据库查询性能的方法。
|
4天前
|
缓存 NoSQL Redis
【后端面经】【缓存】36|Redis 单线程:为什么 Redis 用单线程而 Memcached 用多线程?-- Redis多线程
【5月更文挑战第21天】Redis启用多线程后,主线程负责接收事件和命令执行,IO线程处理读写数据。请求处理流程中,主线程接收客户端请求,IO线程读取并解析命令,主线程执行后写回响应。业界普遍认为,除非必要,否则不建议启用多线程模式,因单线程性能已能满足多数需求。公司实际场景中,启用多线程使QPS提升约50%,或选择使用Redis Cluster以提升性能和可用性。
10 0
|
5天前
|
NoSQL Redis 数据库
【后端面经】【缓存】36|Redis 单线程:为什么 Redis 用单线程而 Memcached 用多线程?-- Memcache + Redis 多线程
【5月更文挑战第20天】Redis采用单线程模式以避免上下文切换和资源竞争,简化调试,且其性能瓶颈在于网络IO和内存,而非多线程。相比之下,Memcache使用多线程能更好地利用多核CPU,但伴随上下文切换和锁管理的开销。尽管Redis单线程性能不俗,6.0版本引入多线程以提升高并发下的IO处理能力。启用多线程后,Redis结合Reactor和epoll实现并发处理,提高系统性能。
25 0