python并发编程: Python线程安全问题以及解决方案

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: python并发编程: Python线程安全问题以及解决方案

往期文章:

  1. 并发编程简介
  2. 怎样选择多线程多进程多协程
  3. Python速度慢的罪魁祸首,全局解释器锁GIL
  4. 使用多线程,Python爬虫被加速10倍
  5. Python实现生产者消费者爬虫

线程安全概念介绍

线程安全指某个函数、函数库在多线程环境中被调用时,能够正确地处理多个线程之间的共享变量,使程序功能正确完成。由于线程的执行随时会发生切换,就造成了不可预料的结果,出现线程不安全。

上图展示的是一个取钱的过程,每次取钱,先进行if判断,然后再减去金额。线程1执行到if判断完,就被切换到线程2了。 此时,线程2也进入到了if中又被切换到线程1,线程1继续执行下去,减去金额,取到了钱。切换到线程2,也减去金额,取到了钱,显然就有问题了。 银行亏了600块。

Lock用于解决线程安全问题

try-finally模式

import threading

lock = threading.Lock()
lock.acquire()
try:
    #do something
finally:
    lock.release()

with模式(更常用)

import threading

lock = threading.Lock()
whit lock:
  #do something

线程锁使用实例

import threading
import time
from loguru import logger

lock = threading.Lock()

class Account:

    def __init__(self,balance) -> None:
        self.balance = balance

def draw(account:Account,amount):
    with lock:
        if account.balance >= amount:
            time.sleep(1)
            logger.info("{}取钱成功".format(threading.current_thread().name))
            account.balance -= amount
            logger.info("线程{},{}余额".format(threading.current_thread().name,account.balance))
        else:
            logger.error("{}取钱失败,余额不足!".format(threading.current_thread().name))        

if __name__ == "__main__":
    account = Account(1000)
    task1 = threading.Thread(target=draw,args=(account,800),name="task1")
    task2 = threading.Thread(target=draw,args=(account,800),name="taks2")

    task1.start()
    task2.start()

执行结果如下:

目录
相关文章
|
3月前
|
Linux 计算机视觉 C++
【解决方案】Building wheel for opencv-python:安装卡顿的原因与解决方案
当你安装OpenCV时,命令行停在Building wheel for opencv-python (PEP 517) ... -似乎卡住了。这并非程序假死,而是其编译耗时巨大。本文将揭示原因,并提供优化安装体验的实用方法。
458 88
|
3月前
|
数据采集 存储 JSON
Python爬取知乎评论:多线程与异步爬虫的性能优化
Python爬取知乎评论:多线程与异步爬虫的性能优化
|
3月前
|
人工智能 安全 调度
Python并发编程之线程同步详解
并发编程在Python中至关重要,线程同步确保多线程程序正确运行。本文详解线程同步机制,包括互斥锁、信号量、事件、条件变量和队列,探讨全局解释器锁(GIL)的影响及解决线程同步问题的最佳实践,如避免全局变量、使用线程安全数据结构、精细化锁的使用等。通过示例代码帮助开发者理解并提升多线程程序的性能与可靠性。
120 0
|
8天前
|
异构计算 Python
ERROR: pip’s dependency resolver does not currently take into 报错-Python项目依赖冲突的解决方案-优雅草优雅草卓伊凡
ERROR: pip’s dependency resolver does not currently take into 报错-Python项目依赖冲突的解决方案-优雅草优雅草卓伊凡
80 1
|
3月前
|
数据采集 NoSQL 调度
当生成器遇上异步IO:Python并发编程的十大实战兵法
本文通过十大实战场景,详解Python中生成器与异步IO的高效结合。从协程演进、背压控制到分布式锁、性能剖析,全面展示如何利用asyncio与生成器构建高并发应用,助你掌握非阻塞编程核心技巧,提升I/O密集型程序性能。
100 0
|
5月前
|
Java 开发者 Kotlin
华为仓颉语言初识:并发编程之线程的基本使用
本文详细介绍了仓颉语言中线程的基本使用,包括线程创建(通过`spawn`关键字)、线程名称设置、线程执行控制(使用`get`方法阻塞主线程以获取子线程结果)以及线程取消(通过`cancel()`方法)。文章还指出仓颉线程与Java等语言的差异,例如默认不提供线程名称。掌握这些内容有助于开发者高效处理并发任务,提升程序性能。
172 2
|
8天前
|
人工智能 Shell Python
ERROR: pip’s dependency resolver does not currently take into 报错-Python项目依赖冲突的解决方案-优雅草优雅草卓伊凡
ERROR: pip’s dependency resolver does not currently take into 报错-Python项目依赖冲突的解决方案-优雅草优雅草卓伊凡
49 0
|
3月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
4月前
|
JSON 算法 Java
打造终端里的下载利器:Python实现可恢复式多线程下载器
在数字时代,大文件下载已成为日常需求。本文教你用Python打造专业级下载器,支持断点续传、多线程加速、速度限制等功能,显著提升终端下载体验。内容涵盖智能续传、多线程分块下载、限速控制及Rich库构建现代终端界面,助你从零构建高效下载工具。
250 1

推荐镜像

更多