python并发编程:Python异步IO实现并发爬虫

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: python并发编程:Python异步IO实现并发爬虫

往期文章:

  1. 并发编程简介
  2. 怎样选择多线程多进程多协程
  3. Python速度慢的罪魁祸首,全局解释器锁GIL
  4. 使用多线程,Python爬虫被加速10倍
  5. Python实现生产者消费者爬虫
  6. Python线程安全问题以及解决方案
  7. Python好用的线程池ThreadPoolExecutor
  8. Python使用线程池在Web服务中实现加速
  9. 使用多进程multiprocessing模块加速程序的运行
  10. 使用多进程multiprocessing模块加速程序的运行

协程内容的介绍

  • 上图的上面是单线程爬虫 cpu的执行情况,可以发现,经常因为等待IO而影响CPU的执行效率。
  • 上图的下面是协程,协程主要是在单线程内实现的,以爬虫为例,协程先是让cpu爬取第一个url的内容,等待IO的时候,它又让CPU爬取第二个url的内容,当第二个任务等待IO的时候,它又让CPU爬取第三个url的内容,然后第三个任务等待IO, 它又循环回来,执行第一个任务,就这样返回循环。 所以,协程就是大循环。

asyncio使用

import asyncio

# 获取事件循环
loop = asyncio.get_event_loop()

# 定义协程
async def myfunc(url):
    await get_url(url)

# 创建task列表
tasks = [loop.create_task(myfunc(url)) for url in urls]

# 执行爬虫事件列表
loop.run_until_complete(asyncio.wait(tasks))

注意:

  • 要用在异步IO编程中, 依赖的库必须支持异步IO特性
  • 爬虫引用中:requests 不支持异步, 需要用 aiohttp

代码演示

import aiohttp
import asyncio
from loguru import logger
from  cnblogs_spider import urls
import time

async def async_craw(url):
    async with aiohttp.ClientSession() as session:
        async with session.get(url) as resp:
            result = await resp.text()
            logger.info("craw url {},{}".format(url,len(result)))


loop = asyncio.get_event_loop()
# 定义超级循环
tasks = [ loop.create_task(async_craw(url))  for url in urls]


start = time.time()
loop.run_until_complete(asyncio.wait(tasks))
end = time.time()
logger.info("use time {}秒".format(end-start))

执行结果如下:

信号量

信号量(英语:Semaphore)又称为信号量、旗语是一个同步对象,用于保持在0至指定最大值之间的一个计数值。

  • 当线程完成一次对该semaphore对象的等待(wait)时,该计数值减一;
  • 当线程完成一次对semaphore对象的释放(release)时,计数值加一。
  • 当计数值为0,则线程等待该semaphore对象不再能成功直至该semaphore对象变成signaled状态
  • semaphore对象的计数值大于0,为signaled状态;计数值等于0,为nonsignaled状态.

信号量是用来控制并发度的。

主要有两种实现方式:

  • 方式一:
    ```python
    sem = asyncio.Semaphore(10)

... later

async with sem:

# work with shared resource

- 方式二:
```python
sem = asyncio.Semaphore(10)

# ... later
await sem.acquire()
try:
    # work with shared resource
finally:
    sem.release()

用信号量控制协程数进行爬虫

import aiohttp
import asyncio
from loguru import logger
from  cnblogs_spider import urls
import time



# 加入信号量,控制并发度
semaphore = asyncio.Semaphore(10)

async def async_craw(url):
    async with semaphore:
        async with aiohttp.ClientSession() as session:
            async with session.get(url) as resp:
                result = await resp.text()
                logger.info("craw url {},{}".format(url,len(result)))


loop = asyncio.get_event_loop()
# 定义超级循环
tasks = [ loop.create_task(async_craw(url))  for url in urls]


start = time.time()
loop.run_until_complete(asyncio.wait(tasks))
end = time.time()
logger.info("use time {}秒".format(end-start))

总结

本系列的文章已经更新完毕,如果大家对python并发编程感兴趣的可以关注攻城狮成长日记公众号,获取更多的内容,以下是本系列的全部代码。大家可以访问这个网址获取代码https://gitee.com/didiplus/pythonscript.git

目录
相关文章
|
24天前
|
数据采集 存储 XML
Python爬虫:深入探索1688关键词接口获取之道
在数字化经济中,数据尤其在电商领域的价值日益凸显。1688作为中国领先的B2B平台,其关键词接口对商家至关重要。本文介绍如何通过Python爬虫技术,合法合规地获取1688关键词接口,助力商家洞察市场趋势,优化营销策略。
|
9天前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
14天前
|
数据采集 存储 API
利用Python爬虫获取1688关键词接口全攻略
本文介绍如何使用Python爬虫技术合法合规地获取1688关键词接口数据,包括环境准备、注册1688开发者账号、获取Access Token、构建请求URL、发送API请求、解析HTML及数据处理存储等步骤,强调遵守法律法规和合理使用爬虫技术的重要性。
|
21天前
|
数据采集 JSON 开发者
Python爬虫京东商品详情数据接口
京东商品详情数据接口(JD.item_get)提供商品标题、价格、品牌、规格、图片等详细信息,适用于电商数据分析、竞品分析等。开发者需先注册账号、创建应用并申请接口权限,使用时需遵循相关规则,注意数据更新频率和错误处理。示例代码展示了如何通过 Python 调用此接口并处理返回的 JSON 数据。
|
26天前
|
XML 数据采集 数据格式
Python 爬虫必备杀器,xpath 解析 HTML
【11月更文挑战第17天】XPath 是一种用于在 XML 和 HTML 文档中定位节点的语言,通过路径表达式选取节点或节点集。它不仅适用于 XML,也广泛应用于 HTML 解析。基本语法包括标签名、属性、层级关系等的选择,如 `//p` 选择所有段落标签,`//a[@href='example.com']` 选择特定链接。在 Python 中,常用 lxml 库结合 XPath 进行网页数据抓取,支持高效解析与复杂信息提取。高级技巧涵盖轴的使用和函数应用,如 `contains()` 用于模糊匹配。
|
23天前
|
数据采集 JSON 测试技术
Grequests,非常 Nice 的 Python 异步 HTTP 请求神器
在Python开发中,处理HTTP请求至关重要。`grequests`库基于`requests`,支持异步请求,通过`gevent`实现并发,提高性能。本文介绍了`grequests`的安装、基本与高级功能,如GET/POST请求、并发控制等,并探讨其在实际项目中的应用。
33 3
|
29天前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
27天前
|
数据采集 JavaScript 前端开发
Python爬虫能处理动态加载的内容吗?
Python爬虫可处理动态加载内容,主要方法包括:使用Selenium模拟浏览器行为;分析网络请求,直接请求API获取数据;利用Pyppeteer控制无头Chrome。这些方法各有优势,适用于不同场景。
|
1月前
|
数据采集 监控 搜索推荐
python爬虫的基本使用
本文介绍了Python爬虫的基本概念及其广泛应用,包括搜索引擎、数据挖掘、网络监控、舆情分析和信息聚合等领域。通过安装`urllib`和`BeautifulSoup`库,展示了如何编写简单代码实现网页数据的抓取与解析。爬虫技术在大数据时代的重要性日益凸显,为各行业提供了高效的数据获取手段。
37 1
|
1月前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####