信号补零对信号频谱的影响

简介: 信号补零对信号频谱的影响

前言

本文对信号补零前与补零后分别做 FFT,对频谱进行分析。

先抛出结论:

补 1 次零相当于在原始频谱图中每两个频率之间插入1个频率值,补 2 次零相当于在原始频谱图中每两个频率之间插入 2 个频率值,并且原始频率值的位置及其幅值保持不变。因此, 补零会使频谱图中的频率点的数量增加,从而使得频谱图更加的光滑连续,但是补零不能对频谱图中的频率分辨率、频率值以及幅值有所改善。


一、 什么是补零

FFT 运算点数(M) > 采样点数(N)时,fft(xn,M) 函数对信号 xn 进行尾补零操作即在该信号尾部添加多个值为 0 的数据点以使信号总点数 N 增至 FFT 运算所需点数M

二、案例

image.png

三、补零前仿真及分析

直接对这 1000 个数据点做 FFT

1、补零前 MATLAB 源码

%% [预处理]
clc;   % 清除命令窗口
clear; % 清除工作空间的变量和函数
clf;   % 清除当前图形
%% [采样参数]
fs = 100e6;         % 采样频率 (Hz)  
ts = 1/fs;          % 采样周期 (s)
N  = 1000;          % 采样点数 (个)
n  = 0:N-1;         % 采样点索引
t  = n*ts;          % 采样时间轴
%% [未补零 被采信号 && 绘制时域波形]
fa = 1e6;           % 信号 a 的频率
fb = 1.05e6;        % 信号 b 的频率
xn = cos(2*pi*fa*t) + cos(2*pi*fb*t);   % 被采信号 = 信号a + 信号b
figure(1);
plot(t, xn);
axis([0 10e-6 -inf inf]);  % x 轴范围设置成[0,10us],y 轴范围最小值和最大值都为无穷
title('xn 时域图');
ylabel('幅度/V');
xlabel('时间/s');
%% [未补零 被采信号 && 绘制频谱图]
M = 1000;                   % FFT 运算点数
X = fft(xn, M);             % FFT 输出值
X = [X(1)/N,X(2:M)*2/N];    % 幅度轴,对FFT输出值进行归一化处理,得到幅度轴上的值。
k = 0:M-1;                  % 频率点索引
f = fs*k/(M-1);             % 频率轴
figure(2);
plot(f, abs(X));
axis([0.5e6 1.5e6 0 1.5]);  % x 轴范围设置成[0.5e6,1.5e6],y 轴范围设置成[0,1.5]
title('xn 频谱图');
ylabel('X(f)');
xlabel('频率/Hz');

2、仿真及结果分析

①、x n x_nxn 时域图

②、x n x_nxn 频谱图

image.png

四、补零后仿真及分析

对数据补零,增加 FFT 点数,比如补 6000 个零,做 7000 个点的 FFT。

1、补6000个零且1000采样点

①、 MATLAB 源码

%% [预处理]
clc;   % 清除命令窗口
clear; % 清除工作空间的变量和函数
clf;   % 清除当前图形
%% [采样参数]
fs = 100e6;         % 采样频率 (Hz)  
ts = 1/fs;          % 采样周期 (s)
N  = 1000;          % 采样点数 (个)
n  = 0:N-1;         % 采样点索引
t  = n*ts;          % 采样时间轴
%% [被采信号 && 绘制时域波形] 
fa = 1e6;           % 信号 a 的频率
fb = 1.05e6;        % 信号 b 的频率
xn = cos(2*pi*fa*t) + cos(2*pi*fb*t);   % 被采信号 = 信号a + 信号b
figure(1);
plot(t, xn);
axis([0 10e-6 -inf inf]);  % x 轴范围设置成[0,10us],y 轴范围最小值和最大值都为无穷
title('xn 时域图');
ylabel('幅度/V');
xlabel('时间/s');
%% [尾补零 被采信号 && 绘制时域波形]
xnwei=[xn zeros(1,6000)]; % 补6000个零
M = length(xnwei);          % FFT 运算点数
X = fft(xnwei, M);          % FFT 输出值
X = [X(1)/N,X(2:M)*2/N];    % 幅度轴,对FFT输出值进行归一化处理,得到幅度轴上的值。
k = 0:M-1;                  % 频率点索引
f = fs*k/(M-1);             % 频率轴
figure(2);
plot(f, abs(X));
axis([0.5e6 1.5e6 0 1.5]);  % x 轴范围设置成[0.5e6,1.5e6],y 轴范围设置成[0,1.5]
title('补零后共7000个数据点做FFT的频谱');
ylabel('X(f)');
xlabel('频率/Hz');

②、仿真及结果分析

可以看到信号频谱变得平滑了,但是仍然无法区分1MHz1.05MHz

这里就要引出一个波形分辨率的概念,虽然补零了,提高了频谱分辨率,但是无法提高波形分辨率

2、波形分辨率

发现频率成分无法被区分开,第一反应就是:频率分辨率不够,那么,如何提高频率分辨率呢?首先要清楚,这里存在两种类型的频率分辨率。


image.png

image.png

所以要想提高波形分辨率,必须提高信号数据本身的长度

3、补6000个零且7000采样点

采样 7000 个信号数据做 FFT,还是补 6000 个零 ,做 13000 个点的 FFT

①、 MATLAB 源码

%% [预处理]
clc;   % 清除命令窗口
clear; % 清除工作空间的变量和函数
clf;   % 清除当前图形
%% [采样参数]
fs = 100e6;         % 采样频率 (Hz)  
ts = 1/fs;          % 采样周期 (s)
N  = 7000;          % 采样点数 (个)
n  = 0:N-1;         % 采样点索引
t  = n*ts;          % 采样时间轴
%% [被采信号 && 绘制时域波形] 
fa = 1e6;           % 信号 a 的频率
fb = 1.05e6;        % 信号 b 的频率
xn = cos(2*pi*fa*t) + cos(2*pi*fb*t);   % 被采信号 = 信号a + 信号b
figure(1);
plot(t, xn);
axis([0 10e-6 -inf inf]);  % x 轴范围设置成[0,10us],y 轴范围最小值和最大值都为无穷
title('xn 时域图');
ylabel('幅度/V');
xlabel('时间/s');
%% [尾补零 被采信号 && 绘制时域波形]
xnwei=[xn zeros(1,6000)]; % 补6000个零
M = length(xnwei);          % FFT 运算点数
X = fft(xnwei, M);          % FFT 输出值
X = [X(1)/N,X(2:M)*2/N];    % 幅度轴,对FFT输出值进行归一化处理,得到幅度轴上的值。
k = 0:M-1;                  % 频率点索引
f = fs*k/(M-1);             % 频率轴
figure(2);
plot(f, abs(X));
axis([0.5e6 1.5e6 0 1.5]);  % x 轴范围设置成[0.5e6,1.5e6],y 轴范围设置成[0,1.5]
title('采样点7000且补零后共13000个数据点做FFT的频谱');
ylabel('X(f)');
xlabel('频率/Hz');

②、仿真及结果分析


image.png

image.png

这是因为在1.05MHz 那个地方刚好有个频点,也就是出现了所谓的频谱泄漏,还是数据长度不够,但这时是可以通过补零来达到目的。再补零 1000 个点,做 14000 点的 FFT。

4、补7000个零且7000采样点

采样 7000 个信号数据做 FFT,补 7000 个零 ,做 14000 点的 FFT

①、 MATLAB 源码

%% [预处理]
clc;   % 清除命令窗口
clear; % 清除工作空间的变量和函数
clf;   % 清除当前图形
%% [采样参数]
fs = 100e6;         % 采样频率 (Hz)  
ts = 1/fs;          % 采样周期 (s)
N  = 7000;          % 采样点数 (个)
n  = 0:N-1;         % 采样点索引
t  = n*ts;          % 采样时间轴
%% [被采信号 && 绘制时域波形] 
fa = 1e6;           % 信号 a 的频率
fb = 1.05e6;        % 信号 b 的频率
xn = cos(2*pi*fa*t) + cos(2*pi*fb*t);   % 被采信号 = 信号a + 信号b
figure(1);
plot(t, xn);
axis([0 10e-6 -inf inf]);  % x 轴范围设置成[0,10us],y 轴范围最小值和最大值都为无穷
title('xn 时域图');
ylabel('幅度/V');
xlabel('时间/s');
%% [尾补零 被采信号 && 绘制时域波形]
xnwei=[xn zeros(1,7000)];   % 补7000个零
M = length(xnwei);          % FFT 运算点数
X = fft(xnwei, M);          % FFT 输出值
X = [X(1)/N,X(2:M)*2/N];    % 幅度轴,对FFT输出值进行归一化处理,得到幅度轴上的值。
k = 0:M-1;                  % 频率点索引
f = fs*k/(M-1);             % 频率轴
figure(2);
plot(f, abs(X));
axis([0.5e6 1.5e6 0 1.5]);  % x 轴范围设置成[0.5e6,1.5e6],y 轴范围设置成[0,1.5]
title('采样点7000且补零后共14000个数据点做FFT的频谱');
ylabel('X(f)');
xlabel('频率/Hz');

②、仿真及结果分析

image.png


五、补零的好处

  • 使数据 N 为 2 的整次幂,便于使用 FFT
  • 补零后,其实是对 DFT 结果做了插值,克服“栅栏"效应,使谱外观平滑化。我把“栅栏"效应形象理解为,就像站在栅栏旁边透过栅栏看外面风景,栅栏会挡住比较多风景,此时就可能漏掉较大频域分量,但是补零以后,相当于你站远了,风景就看的越来越清楚了。
  • 由于对时域数据的截短必然造成频谱泄露,因此在频谱中可能出现难以辨认的谱峰,补零在一定程度上能消除这种现象。

对信号进行头补零或尾补零再得到的幅频响应相等,相频响应不同

补零会使频谱图中的频率点的数量增加,从而使得频谱图更加的光滑连续,但是补零不能对频谱图中的频率分辨率、频率值以及幅值有所改善。

  • 补零(Zero-padding)是在FFT计算中向输入信号序列的末尾添加零值,从而增加信号的长度。这样做的主要目的是在频域中插入更多的零频率样本,以获得更好的频谱分析图。
  • 补零可以在一定程度上改善频谱图的可视化效果,使频谱图在频率轴上呈现更平滑的外观。这是因为补零增加了离散傅里叶变换(DFT)点数,从而在频率轴上产生更多的插值点。然而,这并不意味着补零改善了频率分辨率或精确性。
  • 频率分辨率由采样率和FFT长度决定,而补零并不改变采样率。补零只是对现有的采样点进行插值,不会增加频率分辨率。实际上,补零只是在现有的频率分辨率上插入了更多的点,而不是提高了分辨率本身。
  • 频率值和幅值也不会因为补零而改变。补零只是在现有的频率轴上插入了更多的点,对原有的频率值和幅值进行了插值。这些插值点的值是通过对原始采样点进行插值计算得到的,而不是通过补零本身引入的信息。
  • 如果希望改善频率分辨率或精确性,需要增加采样率或使用更长的FFT长度。

六、资源自取

信号补零对信号频谱的影响

目录
相关文章
|
4月前
|
算法 5G Windows
OFDM系统中的信号检测算法分类和详解
参考文献 [1]周健, 张冬. MIMO-OFDM系统中的信号检测算法(I)[J]. 南京工程学院学报(自然科学版), 2010. [2]王华龙.MIMO-OFDM系统传统信号检测算法[J].科技创新与应用,2016(23):63.
78 4
|
7月前
|
C语言
输出4种波形的函数信号发生器
设计了一款基于MCS-51单片机的函数信号发生器,能生成四种波形(正弦、方、三角、锯齿),频率范围10-100Hz,步进值0.1-10Hz。系统包括5V电源、AT89C51单片机、DAC0832、LM358、LCD1602、键盘和LED电路。通过按键切换波形、设定频率和步进值,LCD实时显示信息,LED指示波形类型。Proteus和Altium仿真验证了设计功能。
122 10
|
6月前
|
内存技术
计算机网络——物理层-编码与调制(数字基带信号、模拟基带信号、码元、常用编码、基本调制方法、混合调制)一
计算机网络——物理层-编码与调制(数字基带信号、模拟基带信号、码元、常用编码、基本调制方法、混合调制)一
308 0
|
6月前
计算机网络——物理层-编码与调制(数字基带信号、模拟基带信号、码元、常用编码、基本调制方法、混合调制)二
计算机网络——物理层-编码与调制(数字基带信号、模拟基带信号、码元、常用编码、基本调制方法、混合调制)二
132 0
根据带宽、功率、频率和调制对给定IQ信号进行分类(Matlab代码实现)
根据带宽、功率、频率和调制对给定IQ信号进行分类(Matlab代码实现)
124 0
|
算法 异构计算
m基于FPGA的带相位偏差QPSK调制信号相位估计和补偿算法verilog实现,包含testbench
m基于FPGA的带相位偏差QPSK调制信号相位估计和补偿算法verilog实现,包含testbench
359 0
|
传感器 芯片
MCU实现对外部脉冲信号的计数功能
MCU实现对外部脉冲信号的计数功能
62 1
|
算法 异构计算
m基于FPGA的带相位偏差16QAM调制信号相位估计和补偿算法verilog实现
m基于FPGA的带相位偏差16QAM调制信号相位估计和补偿算法verilog实现
438 2
m基于FPGA的带相位偏差16QAM调制信号相位估计和补偿算法verilog实现
信号与系统概念题1、信号时移只改变信号的相位频谱,不改变信号的幅度频谱2、设两子系统的单位冲击响应分别为h1(t)和h2(t),则由其并联组成的复合系统的单位冲激响应 h(t)=h1(t)+h2(
信号与系统概念题1、信号时移只改变信号的相位频谱,不改变信号的幅度频谱2、设两子系统的单位冲击响应分别为h1(t)和h2(t),则由其并联组成的复合系统的单位冲激响应 h(t)=h1(t)+h2(
|
算法 异构计算
m基于FPGA的多径信道模拟verilog实现,包含testbench,可配置SNR,频偏,多径增益和多径延迟
m基于FPGA的多径信道模拟verilog实现,包含testbench,可配置SNR,频偏,多径增益和多径延迟
229 0