ElasticSearch

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
云防火墙,500元 1000GB
简介: ElasticSearch

- 软件下载链接

「es」https://www.aliyundrive.com/s/WMbUL5npwcj

点击链接保存,或者复制本段内容,打开「阿里云盘」APP ,无需下载极速在线查看,视频原画倍速播放。

- 上传到Linux

  • 解压到/opt目录下
    tar -zxvf elasticsearch-7.4.0-linux-x86_64.tar.gz -C /opt
  • 修改配置
    cd /opt/elasticsearch-7.4.0/config
    vim elasticsearch.yml
    按G到最后, 然后i插入
    cluster.name: my-application
    node.name: node-1
    network.host: 0.0.0.0
    http.port: 9200
    cluster.initial_master_nodes: [“node-1”]

    Esc :wq 保存退出
  • 启动es
    到bin目录下

    es需要的jdk是11但是我们安装的jdk是8, 所以需要配置es使用自己的jdk


    再次启动发现 不能用root用户启动

    所以需要创建新用户

授权es为itheima

新创建的itheima用户最大可创建文件数太小,最大虚拟内存太小,编辑下列配置文件, 添加类似如下内容

vim /etc/security/limits.conf

vim /etc/security/limits.d/20-nproc.conf

vim /etc/sysctl.conf

重新加载

sysctl -p

切换到itheima用户,启动es

报错

修改jvm配置

这次启动终于有started了,表示启动成功了

在浏览器输入

http://192.168.174.128:9200/

有json返回表示启动成功.

关闭防火墙

如果看不到, 查看防火墙是否关闭了

暂时关闭防火墙

systemctl stop firewalld

永久设置防火墙状态

systemctl enable firewalld.service 打开防火墙永久性生效,重启后不会复原

systemctl disable firewalld.service 关闭防火墙,永久性生效,重启后不会复原

Kibana安装

切换会root用户

解压kibana到/opt目录下

修改kibana配置

server.port: 5601

server.host: “0.0.0.0”

server.name: “kibana-itcast”

elasticsearch.hosts: [“http://127.0.0.1:9200”]

elasticsearch.requestTimeout: 99999

启动kibana(重新开一个ssh窗口,不要把es关了)

在bin目录下执行 ./kibana --allow-root

然后浏览器http://192.168.174.128:5601/就可看到kibana界面

IK分词器安装

  • 准备工作
    切回root用户
    设置JAVA_HOME
    vim /etc/profile
    在profile文件末尾添加
    export JAVA_HOME=/opt/elasticsearch-7.4.0/jdk
    export PATH=P A T H : PATH:PATH:{JAVA_HOME}/bin
    保存退出后,重新加载profile
    source /etc/profile

上传解压maven安装包

设置软连接 ln -s apache-maven-3.8.6 maven

操作maven就是操作apache-maven-3.8.6,类似win的快捷方式

设置maven环境变量

vim /etc/profile.d/maven.sh

将下面的内容复制到文件,保存

export MAVEN_HOME=/opt/maven

export PATH=M A V E N H O M E / b i n : {MAVEN_HOME}/bin:MAVENHOME/bin:{PATH}

设置好Maven的路径之后,需要运行下面的命令使其生效

source /etc/profile.d/maven.sh

验证maven是否安装成功

mvn -v

  • 安装ik分词器
    上传并解压分词器zip包
    unzip elasticsearch-analysis-ik-7.4.0.zip
    打包(第一次可能需要10分钟左右)


    将打包好的分词zip包复制到es插件目录中,一系列操作
    cd /opt/elasticsearch-7.4.0/plugins/
    mkdir analysis-ik
    cd analysis-ik
    cp -R /opt/elasticsearch-analysis-ik-7.4.0/target/releases/elasticsearch-analysis-ik-7.4.0.zip /opt/elasticsearch-7.4.0/plugins/analysis-ik
    unzip /opt/elasticsearch-7.4.0/plugins/analysis-ik/elasticsearch-analysis-ik-7.4.0.zip
    cp -R /opt/elasticsearch-analysis-ik-7.4.0/config/* /opt/elasticsearch-7.4.0/config

重启es

切换回itheima用户

启动日志中会有这么一段日志, 表示加载ik分词器成功.

再启动kibana测试ik分词器是否能用

Springboot整合es

引入依赖

<!--引入es的坐标-->
        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-high-level-client</artifactId>
            <version>7.4.0</version>
        </dependency>
        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-client</artifactId>
            <version>7.4.0</version>
        </dependency>
        <dependency>
            <groupId>org.elasticsearch</groupId>
            <artifactId>elasticsearch</artifactId>
            <version>7.4.0</version>
        </dependency>

定义配置文件

定义配置类

@Configuration
@ConfigurationProperties(prefix = "elasticsearch")
public class ElasticSearchConfig {
    private String host;
    private int port;
    public String getHost() {
        return host;
    }
    public void setHost(String host) {
        this.host = host;
    }
    public int getPort() {
        return port;
    }
    public void setPort(int port) {
        this.port = port;
    }
    @Bean
    public RestHighLevelClient client(){
        return new RestHighLevelClient(RestClient.builder(
                new HttpHost(
                        host,
                        port,
                        "http"
                )
        ));
    }
}

表结构

创建索引和映射

PUT goods
{
  "mappings": {
    "properties": {
      "title": {
        "type": "text",
        "analyzer": "ik_smart"
      },
      "price": { 
        "type": "double"
      },
      "createTime": {
        "type": "date"
      },
      "categoryName": { 
        "type": "keyword"
      },
      "brandName": {  
        "type": "keyword"
      },
  
      "spec": {   
        "type": "object"
      },
      "saleNum": {  
        "type": "integer"
      },
      
      "stock": {  
        "type": "integer"
      }
    }
  }
}

批量导入数据到es中

这个一般是定时删除重新导入一次

@Test
    public void importData() throws IOException {
        //1.查询所有数据,mysql
        List<Goods> goodsList = goodsMapper.findAll();
        //2.bulk导入
        BulkRequest bulkRequest = new BulkRequest();
        //2.1 循环goodsList,创建IndexRequest添加数据
        for (Goods goods : goodsList) {
            //2.2 设置spec规格信息 Map的数据   specStr:{}
            //goods.setSpec(JSON.parseObject(goods.getSpecStr(),Map.class));
            String specStr = goods.getSpecStr();
            //将json格式字符串转为Map集合
            Map map = JSON.parseObject(specStr, Map.class);
            //设置spec map
            goods.setSpec(map);
            //将goods对象转换为json字符串
            String data = JSON.toJSONString(goods);//map --> {}
            IndexRequest indexRequest = new IndexRequest("goods");
            indexRequest.id(goods.getId()+"").source(data, XContentType.JSON);
            bulkRequest.add(indexRequest);
        }
        BulkResponse response = client.bulk(bulkRequest, RequestOptions.DEFAULT);
        System.out.println(response.status());
    }

查询所有

/**
     * 查询所有
     *  1. matchAll
     *  2. 将查询结果封装为Goods对象,装载到List中
     *  3. 分页。默认显示10条
     */
    @Test
    public void testMatchAll() throws IOException {
        //2. 构建查询请求对象,指定查询的索引名称
        SearchRequest searchRequest = new SearchRequest("goods");
        //4. 创建查询条件构建器SearchSourceBuilder
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        //6. 查询条件
        QueryBuilder query = QueryBuilders.matchAllQuery();//查询所有文档
        //5. 指定查询条件
        sourceBuilder.query(query);
        //3. 添加查询条件构建器 SearchSourceBuilder
        searchRequest.source(sourceBuilder);
        // 8 . 添加分页信息
        sourceBuilder.from(0);
        sourceBuilder.size(100);
        //1. 查询,获取查询结果
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        //7. 获取命中对象 SearchHits
        SearchHits searchHits = searchResponse.getHits();
        //7.1 获取总记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        List<Goods> goodsList = new ArrayList<>();
        //7.2 获取Hits数据  数组
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            //获取json字符串格式的数据
            String sourceAsString = hit.getSourceAsString();
            //转为java对象
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }

词条查询

/**
     * termQuery:词条查询
     */
    @Test
    public void testTermQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBulider = new SearchSourceBuilder();
        QueryBuilder query = QueryBuilders.termQuery("title","华为");//term词条查询
        sourceBulider.query(query);
        searchRequest.source(sourceBulider);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        //获取记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            //转为java
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }

词条分词查询

/**
     * matchQuery:词条分词查询
     */
    @Test
    public void testMatchQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBulider = new SearchSourceBuilder();
        MatchQueryBuilder query = QueryBuilders.matchQuery("title", "华为手机");
        query.operator(Operator.AND);//求并集, 默认是Operator.OR
        sourceBulider.query(query);
        searchRequest.source(sourceBulider);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        //获取记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }

通配符模糊查询

/**
     * 模糊查询:WildcardQuery
     */
    @Test
    public void testWildcardQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBulider = new SearchSourceBuilder();
        WildcardQueryBuilder query = QueryBuilders.wildcardQuery("title", "华*");
        sourceBulider.query(query);
        searchRequest.source(sourceBulider);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        //获取记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }

正则模糊查询

/**
     * 模糊查询:regexpQuery
     */
    @Test
    public void testRegexpQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBulider = new SearchSourceBuilder();
        RegexpQueryBuilder query = QueryBuilders.regexpQuery("title", "\\w+(.)*");
        sourceBulider.query(query);
        searchRequest.source(sourceBulider);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        //获取记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }

前缀模糊查询

/**
     * 模糊查询:perfixQuery
     */
    @Test
    public void testPrefixQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBulider = new SearchSourceBuilder();
        PrefixQueryBuilder query = QueryBuilders.prefixQuery("brandName", "三");
        sourceBulider.query(query);
        searchRequest.source(sourceBulider);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        //获取记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }

范围查询&排序

/**
     * 1. 范围查询:rangeQuery
     * 2. 排序
     */
    @Test
    public void testRangeQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBulider = new SearchSourceBuilder();
        //范围查询
        RangeQueryBuilder query = QueryBuilders.rangeQuery("price");
        //指定下限
        query.gte(2000);
        //指定上限
        query.lte(3000);
        sourceBulider.query(query);
        //排序
        sourceBulider.sort("price", SortOrder.DESC);
        searchRequest.source(sourceBulider);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        //获取记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }

多个字段查询

/**
     * queryString可以指定多个字段查询
     */
    @Test
    public void testQueryStringQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBulider = new SearchSourceBuilder();
        //queryString
        QueryStringQueryBuilder query = QueryBuilders.queryStringQuery("华为手机").field("title").field("categoryName").field("brandName").defaultOperator(Operator.AND);
        sourceBulider.query(query);
        searchRequest.source(sourceBulider);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        //获取记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }

布尔查询(多条件连接)

/**
     * 布尔查询:boolQuery
     * 1. 查询品牌名称为:华为
     * 2. 查询标题包含:手机
     * 3. 查询价格在:2000-3000
     */
    @Test
    public void testBoolQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBulider = new SearchSourceBuilder();
        //1.构建boolQuery
        BoolQueryBuilder query = QueryBuilders.boolQuery();
        //2.构建各个查询条件
        //2.1 查询品牌名称为:华为
        QueryBuilder termQuery = QueryBuilders.termQuery("brandName","华为");
        query.must(termQuery);
        //2.2. 查询标题包含:手机
        QueryBuilder matchQuery = QueryBuilders.matchQuery("title","手机");
        query.filter(matchQuery);
        //2.3 查询价格在:2000-3000
        QueryBuilder rangeQuery = QueryBuilders.rangeQuery("price");
        ((RangeQueryBuilder) rangeQuery).gte(2000);
        ((RangeQueryBuilder) rangeQuery).lte(3000);
        query.filter(rangeQuery);
        //3.使用boolQuery连接
        sourceBulider.query(query);
        searchRequest.source(sourceBulider);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        //获取记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }

聚合查询

/**
     * 聚合查询:桶聚合,分组查询
     * 1. 查询title包含手机的数据
     * 2. 查询所有品牌列表
     */
    @Test
    public void testAggQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBulider = new SearchSourceBuilder();
        // 1. 查询title包含手机的数据
        MatchQueryBuilder query = QueryBuilders.matchQuery("title", "手机");
        sourceBulider.query(query);
        // 2. 查询品牌列表
        /*
        参数:
            1. goods_brands 自定义的名称,将来用于获取数据
            2. brandName 分组的字段
         */
        AggregationBuilder agg = AggregationBuilders.terms("goods_brands").field("brandName").size(100);
        sourceBulider.aggregation(agg);
        searchRequest.source(sourceBulider);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        //获取记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
        // 获取聚合结果
        Aggregations aggregations = searchResponse.getAggregations();
        Map<String, Aggregation> aggregationMap = aggregations.asMap();
        // 获取聚合结果goods_brands
        Terms goods_brands = (Terms) aggregationMap.get("goods_brands");
        List<? extends Terms.Bucket> buckets = goods_brands.getBuckets();
        List brands = new ArrayList();
        for (Terms.Bucket bucket : buckets) {
            Object key = bucket.getKey();
            brands.add(key);
        }
        for (Object brand : brands) {
            System.out.println(brand);
        }
    }

高亮查询

/**
     *
     * 高亮查询:
     *  1. 设置高亮
     *      * 高亮字段
     *      * 前缀
     *      * 后缀
     *  2. 将高亮了的字段数据,替换原有数据
     */
    @Test
    public void testHighLightQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBulider = new SearchSourceBuilder();
        // 1. 查询title包含手机的数据
        MatchQueryBuilder query = QueryBuilders.matchQuery("title", "手机");
        sourceBulider.query(query);
        //设置高亮
        HighlightBuilder highlighter = new HighlightBuilder();
        //设置三要素
        highlighter.field("title");
        highlighter.preTags("<font color='red'>");
        highlighter.postTags("</font>");
        sourceBulider.highlighter(highlighter);
        // 2. 查询品牌列表
        /*
        参数:
            1. goods_brands 自定义的名称,将来用于获取数据
            2. brandName 分组的字段
         */
        AggregationBuilder agg = AggregationBuilders.terms("goods_brands").field("brandName").size(100);
        sourceBulider.aggregation(agg);
        searchRequest.source(sourceBulider);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        //获取记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            // 获取高亮结果,替换goods中的title
            Map<String, HighlightField> highlightFields = hit.getHighlightFields();
            HighlightField HighlightField = highlightFields.get("title");
            Text[] fragments = HighlightField.fragments();
            //替换
            goods.setTitle(fragments[0].toString());
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
        // 获取聚合结果
        Aggregations aggregations = searchResponse.getAggregations();
        Map<String, Aggregation> aggregationMap = aggregations.asMap();
        Terms goods_brands = (Terms) aggregationMap.get("goods_brands");
        List<? extends Terms.Bucket> buckets = goods_brands.getBuckets();
        List brands = new ArrayList();
        for (Terms.Bucket bucket : buckets) {
            Object key = bucket.getKey();
            brands.add(key);
        }
        for (Object brand : brands) {
            System.out.println(brand);
        }
    }
相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
5月前
|
自然语言处理 数据挖掘 定位技术
深入探索Elasticsearch中的QueryBuilders
深入探索Elasticsearch中的QueryBuilders
285 0
|
6月前
|
搜索推荐 关系型数据库 MySQL
【Elasticsearch】初识elasticsearch
【Elasticsearch】初识elasticsearch
70 1
|
6月前
|
搜索推荐 Java Apache
ElasticSearch
ElasticSearch
64 0
|
存储 关系型数据库 MySQL
Elasticsearch(一)
Elasticsearch(一)
67 0
|
存储 JSON 自然语言处理
【Elasticsearch】初识elasticsearch(下)
【Elasticsearch】初识elasticsearch(下)
73 0
|
存储 监控 搜索推荐
【Elasticsearch】初识elasticsearch(上)
【Elasticsearch】初识elasticsearch
73 0
|
自然语言处理 索引
如果还不会Elasticsearch这七个问题 那么你的Elasticsearch白学
如果还不会Elasticsearch这七个问题 那么你的Elasticsearch白学
76 0
|
缓存 自然语言处理 安全