卷积神经元网络中常用卷积核理解及基于Pytorch的实例应用(附完整代码)

简介: 卷积神经元网络中常用卷积核理解及基于Pytorch的实例应用(附完整代码)
0.前言

本文的目的:说明在卷积操作中常用的卷积核及其作用原理,并基于Pytorch框架通过实例使用这些卷积核。


看本文前要掌握的基础知识:需要了解卷积神经元网络CNN中卷积的运算原理,CSDN上此类文章很多,不再赘述。推荐一篇:RGB彩色图像的卷积过程(gif动图演示)


1.常用卷积核

卷积核(kernel)是卷积神经元网络CNN中最重要的权重参数,在卷积神经元网络学习过程中,主要也是为了学习到合适的卷积核。下面将通过对图像的处理方式将常用的卷积核分为3类。


1.1 边缘识别类卷积核

这类卷积核是研究最多的,卷积核多种多样。这类卷积核的共同特征是:卷积核内所有的值求和为0,这是因为边缘的区域,图像的像素值会发生突变,与这样的卷积核做卷积会得到一个不为0的值。而非边缘的区域,像素值很接近,与这样的卷积核做卷积会得到一个约等于0的值。


常用的边缘检测卷积核有:

①Robert算子

image.png

image.png

②Prewitt算子

image.png

image.png

③Sobel算子

image.png

image.png

④Laplace算子

image.png

1.2 模糊化卷积核

这类卷积核的作用原理是对一片区域内的像素值求平均值,使得像素变化更加平缓,达到模糊化的目的,例如:

image.png

1.3 锐利化卷积核

这类卷积核的作用是凸显像素值有变化的区域,使得本来像素值梯度就比较大的区域(边缘区域)变得像素值梯度更大。在边缘检测中,卷积核的设计要求卷积核内的所有值求和为0,这里的要求刚好相反,要求卷积核内的所有值应该不为0,凸显出像素值梯度较大的区域,例如以下卷积核:

image.png

只要把握以上卷积核的原理,就可以自己设计卷积核。比如模糊化卷积核,这样也是可以的

image.png
2. 基于Pytorch的卷积核实例应用
2.1 tensor与图像的互相转换

①image转tensor:使用PIL中Image.open()打开图像,然后使用torchvision.transforms.ToTensor()转为tensor:

image = Image.open('image_path').convert('RGB') #导入图片
image_to_tensor = torchvision.transforms.ToTensor()   #实例化ToTensor
original_image_tensor = image_to_tensor(image).unsqueeze(0)     #把图片转换成tensor

这里使用.unsqueeze(0)升维的目的是为了后面进行卷积操作准备,因为Conv2d要求输入的tensor维度为4维,即[batch, channel, H, W]。这里对应要增加batch这个维度。

②tensor转image:使用torchvision.utils.save_image():

torchvision.utils.save_image(tensor, 'save_image_path')
2.2 卷积核的指定

因为nn.Conv2d()方法中,卷积核(权重)是默认随机的,所以需要先指定好卷积核:

#卷积核:laplace
conv_laplace = torch.nn.Conv2d(in_channels=3,out_channels=1,kernel_size=3,padding=0,bias=False)
conv_laplace.weight.data = torch.tensor([[[[-1,0,1],[-1,0,1],[-1,0,1]],
                                            [[-1,0,1],[-1,0,1],[-1,0,1]],
                                            [[-1,0,1],[-1,0,1],[-1,0,1]]]], dtype=torch.float32)

注意卷积核的维度,也是上面说的要有4个维度。

3.不同卷积核的图像处理结果

①原图像:

②边缘检测卷积核(prewitt横向算子)卷积后:

③边缘检测卷积核(prewitt纵向算子)卷积后:

④边缘检测卷积核(laplace算子)卷积后:

体验一下同样是边缘检测,以上3个算子的输出差异。尤其是横向和纵向上的差别。

⑤模糊化卷积核卷积后:

⑥锐利化卷积核卷积后:

这里把背景的噪声点都凸显出来了。

4.完整代码
import torch
from PIL import Image
import torchvision


image = Image.open('girl.png').convert('RGB') #导入图片
image_to_tensor = torchvision.transforms.ToTensor()   #实例化ToTensor
original_image_tensor = image_to_tensor(image).unsqueeze(0)     #把图片转换成tensor


#卷积核:prewitt横向
conv_prewitt_h = torch.nn.Conv2d(in_channels=3,out_channels=1,kernel_size=3,padding=0,bias=False)  #bias要设定成False,要不然会随机生成bias,每次结果都不一样
conv_prewitt_h.weight.data = torch.tensor([[[[-1,-1,-1],[0,0,0],[1,1,1]],
                                            [[-1,-1,-1],[0,0,0],[1,1,1]],
                                            [[-1,-1,-1],[0,0,0],[1,1,1]]]], dtype=torch.float32)


#卷积核:prewitt纵向
conv_prewitt_l = torch.nn.Conv2d(in_channels=3,out_channels=1,kernel_size=3,padding=0,bias=False)
conv_prewitt_l.weight.data = torch.tensor([[[[-1,0,1],[-1,0,1],[-1,0,1]],
                                            [[-1,0,1],[-1,0,1],[-1,0,1]],
                                            [[-1,0,1],[-1,0,1],[-1,0,1]]]], dtype=torch.float32)

#卷积核:laplace
conv_laplace = torch.nn.Conv2d(in_channels=3,out_channels=1,kernel_size=3,padding=0,bias=False)
conv_laplace.weight.data = torch.tensor([[[[-1,0,1],[-1,0,1],[-1,0,1]],
                                            [[-1,0,1],[-1,0,1],[-1,0,1]],
                                            [[-1,0,1],[-1,0,1],[-1,0,1]]]], dtype=torch.float32)


#卷积核:模糊化
conv_blur = torch.nn.Conv2d(in_channels=3,out_channels=1,kernel_size=5,padding=0,bias=False)
conv_blur.weight.data = torch.full((1,3,5,5),0.04)


#卷积核:锐利化
conv_sharp = torch.nn.Conv2d(in_channels=3,out_channels=1,kernel_size=3,padding=0,bias=False)
conv_sharp.weight.data = torch.tensor([[[[-1,-1,1],[-1,-1,-1],[-1,-1,-1]],
                                            [[-1,-1,1],[-1,22,-1],[-1,-1,-1]],
                                            [[-1,-1,1],[-1,-1,-1],[-1,-1,-1]]]], dtype=torch.float32)

#生成并保存图片
tensor_prewitt_h = conv_prewitt_h(original_image_tensor)
torchvision.utils.save_image(tensor_prewitt_h, 'prewitt_h.png')

tensor_prewitt_l = conv_prewitt_l(original_image_tensor)
torchvision.utils.save_image(tensor_prewitt_l, 'prewitt_l.png')

tensor_laplace = conv_laplace(original_image_tensor)
torchvision.utils.save_image(tensor_laplace, 'laplace.png')

tensor_blur = conv_blur(original_image_tensor)
torchvision.utils.save_image(tensor_blur, 'blur.png')

tensor_sharp = conv_sharp(original_image_tensor)
torchvision.utils.save_image(tensor_sharp, 'sharp.png')


相关文章
|
2月前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
168 2
|
23天前
|
机器学习/深度学习 数据采集 存储
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
167 0
|
23天前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
|
1月前
|
传感器 机器学习/深度学习 数据采集
【航空发动机寿命预测】基于SE-ResNet网络的发动机寿命预测,C-MAPSS航空发动机寿命预测研究(Matlab代码实现)
【航空发动机寿命预测】基于SE-ResNet网络的发动机寿命预测,C-MAPSS航空发动机寿命预测研究(Matlab代码实现)
132 0
|
11月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
253 17
|
11月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
217 10
|
11月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
11月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
224 10
|
11月前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。

推荐镜像

更多