使用Python批量合并Excel文件的所有Sheet数据

简介: 使用Python批量合并Excel文件的所有Sheet数据

在数据处理和分析的过程中,经常需要将多个Excel文件中的数据进行合并。特别是当这些文件分散在多个子文件夹内,且每个文件又包含多个Sheet时,手动合并这些数据会是一项繁琐且易出错的任务。Python作为一种强大的编程语言,提供了多种库和工具,可以方便地实现这一需求。本文将介绍四种使用Python批量合并同一文件夹内所有子文件夹下的Excel文件内所有Sheet数据的方法,并提供详细的代码和案例。

一、使用pandas和os库进行合并

pandas是一个强大的数据处理库,而os库则提供了与操作系统交互的功能。通过这两个库,我们可以遍历文件夹和子文件夹,读取Excel文件,并将数据合并到一个DataFrame中。

案例与代码实现

假设我们有一个名为excel_files的文件夹,其中包含多个子文件夹,每个子文件夹内都有若干个Excel文件。

import os  
import pandas as pd  
  
# 定义主文件夹路径  
main_folder = 'excel_files'  
  
# 初始化一个空的DataFrame用于存储所有数据  
all_data = pd.DataFrame()  
  
# 遍历主文件夹下的所有子文件夹和文件  
for root, dirs, files in os.walk(main_folder):  
    for file in files:  
        if file.endswith('.xlsx') or file.endswith('.xls'):  # 确保是Excel文件  
            file_path = os.path.join(root, file)  # 构建文件的完整路径  
            # 读取Excel文件中的所有Sheet  
            xls = pd.ExcelFile(file_path)  
            for sheet_name in xls.sheet_names:  
                df = pd.read_excel(xls, sheet_name=sheet_name)  
                # 将每个Sheet的数据追加到all_data中  
                all_data = all_data.append(df, ignore_index=True)  
  
# 将合并后的数据保存到新的Excel文件中  
all_data.to_excel('merged_data.xlsx', index=False)

这段代码首先定义了主文件夹路径,并初始化一个空的DataFrame。然后,使用os.walk()函数遍历主文件夹及其所有子文件夹中的文件。对于每个Excel文件,使用pd.ExcelFile()读取文件,并通过sheet_names属性获取所有Sheet的名称。接着,使用pd.read_excel()函数逐个读取Sheet中的数据,并将其追加到all_data DataFrame中。最后,将合并后的数据保存到新的Excel文件中。

二、使用glob和pandas库进行合并

glob库提供了在文件夹中查找文件路径的功能,结合pandas可以更方便地处理Excel文件。

案例与代码实现

import glob  
import pandas as pd  
  
# 定义主文件夹路径和搜索模式  
main_folder = 'excel_files'  
pattern = '**/*.xlsx'  # 搜索所有子文件夹中的.xlsx文件  
  
# 使用glob查找所有Excel文件路径  
all_files = glob.glob(main_folder + '/' + pattern, recursive=True)  
  
# 初始化一个空的DataFrame用于存储所有数据  
all_data = pd.DataFrame()  
  
# 遍历文件路径,读取数据并合并  
for file in all_files:  
    xls = pd.ExcelFile(file)  
    for sheet_name in xls.sheet_names:  
        df = pd.read_excel(xls, sheet_name=sheet_name)  
        all_data = all_data.append(df, ignore_index=True)  
  
# 保存合并后的数据  
all_data.to_excel('merged_data_glob.xlsx', index=False)

这段代码使用glob.glob()函数查找主文件夹及其所有子文件夹中的Excel文件路径。然后,与第一种方法类似,逐个读取每个文件中的所有Sheet数据,并将其合并到一个DataFrame中。最后,将合并后的数据保存到新的Excel文件中。

三、使用openpyxl库进行合并

openpyxl是一个用于读写Excel 2010 xlsx/xlsm/xltx/xltm文件的Python库。它可以更底层地操作Excel文件,提供更大的灵活性。

案例与代码实现

使用openpyxl进行合并通常涉及更复杂的操作,因为需要手动处理工作簿和工作表。这里仅提供一个大致的框架,具体实现会根据具体需求有所不同。

from openpyxl import load_workbook  
import os  
  
# 初始化一个新的工作簿用于存储合并后的数据  
merged_wb = load_workbook(write_only=True)
merged_ws = merged_wb.active
 
定义主文件夹路径
main_folder = 'excel_files'
 
遍历主文件夹下的所有子文件夹和文件
for root, dirs, files in os.walk(main_folder):
for file in files:
if file.endswith('.xlsx'): # 确保是Excel文件
file_path = os.path.join(root, file)
# 加载Excel文件
wb = load_workbook(filename=file_path, read_only=True)
# 遍历工作簿中的每个工作表
for sheet in wb.worksheets:
for row in sheet.iter_rows(values_only=True):
# 将行数据追加到合并后的工作表中
merged_ws.append(row)
 
保存合并后的工作簿
merged_wb.save('merged_data_openpyxl.xlsx')

这段代码创建了一个新的工作簿,并遍历主文件夹及其子文件夹中的所有Excel文件。对于每个文件,它加载工作簿并遍历其中的每个工作表。然后,使用`iter_rows()`方法逐行读取数据,并将其追加到合并后的工作表中。最后,保存合并后的工作簿。  

 

需要注意的是,`openpyxl`的`write_only`模式可以提高写入性能,但某些功能可能会受到限制。此外,这种方法假设所有工作表的结构都是相同的,如果结构不同,可能需要进行额外的处理。  

四、使用`xlrd`和`xlwt`库进行合并

(注意:`xlrd`库自2.0.0版本后不再支持.xlsx格式,仅支持.xls格式)  

 

`xlrd`和`xlwt`是两个用于读写老版Excel文件(.xls格式)的Python库。虽然它们对于处理新版的.xlsx文件有所限制,但对于.xls文件仍然有效。  

 

**案例与代码实现**  

 

由于`xlrd`不再支持.xlsx格式,这里仅提供一个处理.xls文件的示例。对于.xlsx文件,建议使用`pandas`或`openpyxl`。  

import os  
import xlrd  
import xlwt  
  
# 初始化一个新的工作簿用于存储合并后的数据  
merged_wb = xlwt.Workbook()  
merged_ws = merged_wb.add_sheet('MergedData')  
row_num = 0  
  
# 定义主文件夹路径  
main_folder = 'excel_xls_files'  
  
# 遍历主文件夹下的所有子文件夹和文件  
for root, dirs, files in os.walk(main_folder):  
    for file in files:  
        if file.endswith('.xls'):  # 确保是.xls文件  
            file_path = os.path.join(root, file)  
            # 加载Excel文件  
            wb = xlrd.open_workbook(file_path)  
            # 遍历工作簿中的每个工作表  
            for sheet in wb.sheets():  
                for row_idx in range(sheet.nrows):  
                    row_data = sheet.row_values(row_idx)  
                    # 将行数据写入合并后的工作表中  
                    for col_idx, value in enumerate(row_data):  
                        merged_ws.write(row_num, col_idx, value)  
                    row_num += 1  
  
# 保存合并后的工作簿  
merged_wb.save('merged_data_xlrd_xlwt.xls')

这段代码创建了一个新的工作簿和一个工作表,用于存储合并后的数据。然后,它遍历主文件夹及其子文件夹中的所有.xls文件,加载每个文件的工作簿,并遍历其中的每个工作表。对于每个工作表中的行,它读取行数据并将其写入合并后的工作表中。最后,保存合并后的工作簿。

总结:

本文介绍了四种使用Python批量合并同一文件夹内所有子文件夹下的Excel文件内所有Sheet数据的方法。这些方法分别使用了不同的库和工具,各有其优缺点。在实际应用中,可以根据具体需求和文件格式选择合适的方法。通过合理使用这些工具,可以大大提高数据处理和分析的效率。对于新手朋友来说,建议从简单的方法开始尝试,逐步掌握更高级的技巧和工具。


目录
相关文章
|
11天前
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
7天前
|
文字识别 BI
【图片型PDF】批量识别扫描件PDF指定区域局部位置内容,将识别内容导出Excel表格或批量改名文件,基于阿里云OCR对图片型PDF识别改名案例实现
在医疗和政务等领域,图片型PDF文件(如病历、报告、公文扫描件)的处理需求广泛。通过OCR技术识别这些文件中的文字信息,提取关键内容并保存为表格,极大提高了信息管理和利用效率。本文介绍一款工具——咕嘎批量OCR系统,帮助用户快速处理图片型PDF文件,支持区域识别、内容提取、导出表格及批量改名等功能。下载工具后,按步骤选择处理模式、进行区域采样、批量处理文件,几分钟内即可高效完成数百个文件的处理。
49 8
|
21天前
|
监控 网络安全 开发者
Python中的Paramiko与FTP文件夹及文件检测技巧
通过使用 Paramiko 和 FTP 库,开发者可以方便地检测远程服务器上的文件和文件夹是否存在。Paramiko 提供了通过 SSH 协议进行远程文件管理的能力,而 `ftplib` 则提供了通过 FTP 协议进行文件传输和管理的功能。通过理解和应用这些工具,您可以更加高效地管理和监控远程服务器上的文件系统。
51 20
|
27天前
|
存储 数据采集 数据处理
如何在Python中高效地读写大型文件?
大家好,我是V哥。上一篇介绍了Python文件读写操作,今天聊聊如何高效处理大型文件。主要方法包括:逐行读取、分块读取、内存映射(mmap)、pandas分块处理CSV、numpy处理二进制文件、itertools迭代处理及linecache逐行读取。这些方法能有效节省内存,提升效率。关注威哥爱编程,学习更多Python技巧。
|
2月前
|
人工智能 自然语言处理 Java
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
FastExcel 是一款基于 Java 的高性能 Excel 处理工具,专注于优化大规模数据处理,提供简洁易用的 API 和流式操作能力,支持从 EasyExcel 无缝迁移。
234 9
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
|
28天前
|
存储 JSON 对象存储
如何使用 Python 进行文件读写操作?
大家好,我是V哥。本文介绍Python中文件读写操作的方法,包括文件读取、写入、追加、二进制模式、JSON、CSV和Pandas模块的使用,以及对象序列化与反序列化。通过这些方法,你可以根据不同的文件类型和需求,灵活选择合适的方式进行操作。希望对正在学习Python的小伙伴们有所帮助。欢迎关注威哥爱编程,全栈路上我们并肩前行。
|
1月前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
1月前
|
数据可视化 数据挖掘 大数据
1.1 学习Python操作Excel的必要性
学习Python操作Excel在当今数据驱动的商业环境中至关重要。Python能处理大规模数据集,突破Excel行数限制;提供丰富的库实现复杂数据分析和自动化任务,显著提高效率。掌握这项技能不仅能提升个人能力,还能为企业带来价值,减少人为错误,提高决策效率。推荐从基础语法、Excel操作库开始学习,逐步进阶到数据可视化和自动化报表系统。通过实际项目巩固知识,关注新技术,为职业发展奠定坚实基础。
|
2月前
|
存储 Java easyexcel
招行面试:100万级别数据的Excel,如何秒级导入到数据库?
本文由40岁老架构师尼恩撰写,分享了应对招商银行Java后端面试绝命12题的经验。文章详细介绍了如何通过系统化准备,在面试中展示强大的技术实力。针对百万级数据的Excel导入难题,尼恩推荐使用阿里巴巴开源的EasyExcel框架,并结合高性能分片读取、Disruptor队列缓冲和高并发批量写入的架构方案,实现高效的数据处理。此外,文章还提供了完整的代码示例和配置说明,帮助读者快速掌握相关技能。建议读者参考《尼恩Java面试宝典PDF》进行系统化刷题,提升面试竞争力。关注公众号【技术自由圈】可获取更多技术资源和指导。
|
2月前
|
计算机视觉 Python
如何使用Python将TS文件转换为MP4
本文介绍了如何使用Python和FFmpeg将TS文件转换为MP4文件。首先需要安装Python和FFmpeg,然后通过`subprocess`模块调用FFmpeg命令,实现文件格式的转换。代码示例展示了具体的操作步骤,包括检查文件存在性、构建FFmpeg命令和执行转换过程。
76 7

热门文章

最新文章

推荐镜像

更多