NPU(Neural Processing Unit)和GPGPU(

简介: NPU(Neural Processing Unit)和GPGPU(General-Purpose Graphics Processing Unit)在AI任务处理方面虽然都能发挥重要作用,但它们在设计、功能和适用场景上存在一些明显的差异。

NPU(Neural Processing Unit)和GPGPU(General-Purpose Graphics Processing Unit)在AI任务处理方面虽然都能发挥重要作用,但它们在设计、功能和适用场景上存在一些明显的差异。

image.png

NPU是专门为加速神经网络计算而设计的芯片。它的核心优势在于能够高效地处理AI计算中的大量神经网络推理和训练任务。NPU通过集成大量的乘加单元和加大片内缓存,减少了数据IO瓶颈,从而释放了算力潜能。这使得NPU在处理AI任务时具有更高的效率和性能。

image.png

GPGPU是一种支持通用计算的GPU架构,它可以处理多种通用计算任务,包括涉及大规模数据集的科学和工程计算,以及深度学习等AI任务。GPGPU的优势在于其高度的并行化架构,使得它能够同时处理大量的数据,从而加速计算任务。此外,GPGPU还具有广泛的泛用性,不仅适用于AI领域,还可以用于其他计算密集型任务。

NPU更适合处理那些需要高度优化的AI计算任务,特别是在对性能要求极高的场景中,如自动驾驶、语音识别等。而GPGPU则更适合作为异构计算底座,加速云端训练推理等任务,同时在大数据处理、商业计算等领域也有广泛的应用。

image.png

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
目录
相关文章
|
机器学习/深度学习 并行计算 图形学
CPU、GPU、TPU、NPU等到底是什么?
CPU、GPU、TPU、NPU等到底是什么?
3381 3
|
人工智能 缓存 并行计算
技术改变AI发展:Ada Lovelace架构解读及RTX 4090性能测试分析(系列三)
简介:随着人工智能(AI)的迅速发展,越来越多的应用需要巨大的GPU计算资源。Ada lovelace(后面简称Ada)是NVIDIA最新的图形处理器架构,随2022年9月20日发布的RTX 4090一起公布。
142846 62
技术改变AI发展:Ada Lovelace架构解读及RTX 4090性能测试分析(系列三)
|
人工智能 固态存储 安全
一文告诉你CXL是什么,有什么新的机会 (上)
> 1. 大数据AI/ML应用爆发驱动大内存需求,但内存增长受限,CXL互联方案应运而生 > 2. CXL分为1.0/2.0/3.0版本,分别提供直连、池化、Fabric能力,预计在2022年/203年/2025年之后市场可用,目前看来池化对于软件的影响最大 > 3. CXL更多是对于已有架构的性能优化,全新的机会不多,较大的机会在于系统软件、内存即服务,以及内存数据库和内存云结构 > 4. CXL大概率将成为跨计算引擎的内存结构标准,短期利好云厂商,长期会数据中心架构产生结构性的变革
3525 0
|
运维 大数据 云计算
目前还存活的多个电驴下载站点
<div id="link-report"> <div class="topic-content"> <p>0、<a href="http://www.douban.com/link2?url=http%3A//www.emule-project.net/" rel="nofollow" target="_blank">http://www.emule-pro<wbr>ject.net
21334 0
|
12月前
|
人工智能 自动驾驶 芯片
【AI系统】NPU 基础
近年来,AI技术迅猛发展,催生了NPU和TPU等AI专用处理器,这些处理器专为加速深度学习任务设计,相比传统CPU和GPU,展现出更高效率和性能。本文将介绍AI芯片的概念、技术发展、部署方式及应用场景,涵盖从数据中心到边缘设备的广泛领域,探讨其如何成为AI技术落地的关键推手。
1851 4
|
9月前
|
机器学习/深度学习 人工智能 Kubernetes
容器化AI模型部署实战:从训练到推理
在上一篇中,我们探讨了AI技术如何赋能容器化生态。本篇聚焦于AI模型的容器化部署,通过图像分类任务实例,详细介绍了从模型训练到推理服务的完整流程。使用PyTorch训练CNN模型,Docker打包镜像,并借助Kubernetes进行编排和部署,最终通过FastAPI提供推理服务。容器化技术极大提升了AI模型部署的便利性和管理效率,未来将成为主流趋势。
|
8月前
|
存储 人工智能 安全
AI战略丨全面投入升级 AI 大基建
云厂商拥有全栈技术储备,并通过基础设施的全面升级,让 AI 训练、推理、部署和应用整 个生命周期变得更高效。
|
11月前
|
人工智能 并行计算 程序员
【AI系统】SIMD & SIMT 与芯片架构
本文深入解析了SIMD(单指令多数据)与SIMT(单指令多线程)的计算本质及其在AI芯片中的应用,特别是NVIDIA CUDA如何实现这两种计算模式。SIMD通过单指令对多个数据进行操作,提高数据并行处理能力;而SIMT则在GPU上实现了多线程并行,每个线程独立执行相同指令,增强了灵活性和性能。文章详细探讨了两者的硬件结构、编程模型及硬件执行模型的区别与联系,为理解现代AI计算架构提供了理论基础。
1707 12
|
机器学习/深度学习 人工智能 网络协议