c语言从入门到实战——操作符详解

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
可观测可视化 Grafana 版,10个用户账号 1个月
简介: C语言操作符指的是程序中用来进行各种计算、逻辑和条件操作的符号或符号组合。操作符是编程中用于执行特定操作或比较数据的符号。它们根据操作类型分为算术、比较、逻辑和位操作符。算术操作符执行加、减、乘、除等数学运算;比较操作符比较两个值的大小或相等性;逻辑操作符连接多个条件,形成更复杂的逻辑判断;位操作符则直接对整数的二进制位进行操作。了解各种操作符的特性和用法,对于编写高效、准确的代码至关重要。

操作符详解


前言

C语言操作符指的是程序中用来进行各种计算、逻辑和条件操作的符号或符号组合。

操作符是编程中用于执行特定操作或比较数据的符号。它们根据操作类型分为算术、比较、逻辑和位操作符。算术操作符执行加、减、乘、除等数学运算;比较操作符比较两个值的大小或相等性;逻辑操作符连接多个条件,形成更复杂的逻辑判断;位操作符则直接对整数的二进制位进行操作。了解各种操作符的特性和用法,对于编写高效、准确的代码至关重要。


1. 操作符的分类

  • 算术操作符: + 、- 、* 、/ 、%
  • 移位操作符:<< >>
  • 位操作符: & | ^
  • 赋值操作符: = 、+= 、 -= 、 *= 、 /= 、%= 、<<= 、>>= 、&= 、|= 、^= ?
  • 单目操作符: !、++、--、&、*、+、-、~ 、sizeof、(类型)
  • 关系操作符:> 、>= 、< 、<= 、 == 、 !=
  • 逻辑操作符: && 、||
  • 条件操作符: ? :
  • 逗号表达式: ,
  • 下标引用: [ ]
  • 函数调用: ( )
  • 结构成员访问: . 、->

2. 二进制和进制转换

其实我们经常能听到2进制、8进制、10进制、16进制这样的讲法,那是什么意思呢?其实2进制、8进制、10进制、16进制是数值的不同表示形式而已。

比如:数值15的各种进制的表示形式:

15的2进制:1111
15的8进制:17
15的10进制:15
15的16进制:F

我们重点介绍一下二进制:

首先我们还是得从10进制讲起,其实10进制是我们生活中经常使用的,我们已经形成了很多尝试:

  • 10进制中满10进1
  • 10进制的数字每一位都是0~9的数字组成

其实二进制也是一样的

  • 2进制中满2进1
  • 2进制的数字每一位都是0~1的数字组成

那么 1101 就是二进制的数字了。

2.1 2进制转10进制

其实10进制的123表示的值是一百二十三,为什么是这个值呢?其实10进制的每一位是权重的,10进制的数字从右向左是个位、十位、百位…,分别每一位的权重是100, 101, 102… 如下图:

10进制123每一位权重的理解

2进制和10进制是类似的,只不过2进制的每一位的权重,从右向左是:2 0, 2 1, 2 2… 如果是2进制的1101,该怎么理解呢?

2进制1101每一位权重的理解

2.1.1 10进制转2进制数字

10进制转2进制

2.2 2进制转8进制和16进制

2.2.1 2进制转8进制

8进制的数字每一位是0 ~ 7的,0 ~ 7的数字,各自写成2进制,最多有3个2进制位就足够了,比如7的二进制是111,所以在2进制转8进制数的时候,从2进制序列中右边低位开始向左每3个2进制位会换算一 个8进制位,剩余不够3个2进制位的直接换算。

如:2进制的01101011,换成8进制:0153,0开头的数字,会被当做8进制。

2.2.2 2进制转16进制

16进制的数字每一位是0 ~ 9,a ~ f 的,0~9,a ~f的数字,各自写成2进制,最多有4个2进制位就足够了, 比如 f 的二进制是1111,所以在2进制转16进制数的时候,从2进制序列中右边低位开始向左每4个2进 制位会换算一个16进制位,剩余不够4个二进制位的直接换算。

如:2进制的01101011,换成16进制:0x6b,16进制表示的时候前面加0x

3. 原码、反码、补码

整数的2进制表示方法有三种,即原码、反码和补码

有符号整数的三种表示方法均有符号位和数值位两部分,2进制序列中,最高位的1位是被当做符号位,剩余的都是数值位。

符号位都是用0表示“正”,用1表示“负”。

正整数的原、反、补码都相同。

负整数的三种表示方法各不相同。

  • 原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码。
  • 反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
  • 补码:反码+1就得到补码。

反码得到原码也是可以使用:取反,+1的操作。

对于整形来说:数据存放内存中其实存放的是补码。

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;

同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算 过程是相同的,不需要额外的硬件电路。

4. 移位操作符

<< 左移操作符

>> 右移操作符

注:移位操作符的操作数只能是整数。

4.1 左移操作符

移位规则:左边抛弃、右边补0

#include <stdio.h>
int main()
{
  int num = 10;
  int n = num<<1;
  printf("n= %d\n", n);
  printf("num= %d\n", num);
  return 0;
}

4.2 右移操作符

移位规则:首先右移运算分两种:

  1. 逻辑右移:左边用0填充,右边丢弃
  2. 算术右移:左边用原该值的符号位填充,右边丢弃
#include <stdio.h>
int main()
{
  int num = 10;
  int n = num>>1;
  printf("n= %d\n", n);
  printf("num= %d\n", num);
  return 0;
}

对于移位运算符,不要移动负数位,这个是标准未定义的。

int num = 10;
num>>-1; //error

5. 位操作符:&、|、^、~

位操作符有:

& //按位与
| //按位或
^ //按位异或
~ //按位取反

他们的操作数必须是整数。

按位与操作符(&)将两个操作数的每个对应位进行 AND 操作。它返回一个新值,该值的每个位都是原始操作数的对应位都为1时才为1。例如,0b1010 & 0b1100 的结果将为 0b1000

按位或是一种二进制运算符,表示两个数对应位上只要有一个是1,结果就为1,否则为0。它的符号是 | 。例如,3和5的二进制分别为 00110101,它们进行按位或的结果是 0111,即7。因此,3 | 5 = 7

按位异或(XOR)是一种位运算符,用符号“^”表示。当两个位相同时,结果为0,当两个位不同时,结果为1。例如,将6(二进制为110)和3(二进制为011)进行按位异或运算,则结果为101,即5

C语言中的按位取反用符号 ~ 表示,作用是对一个数进行按位取反,即将每一位上的 0 变为 1,1 变为 0。例如:

int a = 10; // a 的二进制表示为 0000 1010
int b = ~a; // b 的二进制表示为 1111 0101

注意,在进行按位取反时,要将操作数转换为二进制形式,并将符号位也一起取反。

#include <stdio.h>
int main()
{
  int num1 = -3;
  int num2 = 5;
  printf("%d\n", num1 & num2);
  printf("%d\n", num1 | num2);
  printf("%d\n", num1 ^ num2);
  printf("%d\n", ~0);//n&(n-1)可以用来计算二进制位数
  //判断一个数n是否是2的次方数
//
//int main()
//{
//  int n = 0;
//  scanf("%d", &n);
//
//  if ((n & (n - 1)) == 0)
//  {
//    printf("Yes\n");
//  }
//  else
//  {
//    printf("No\n");
//  }
//
//  return 0;
//}
  return 0;
}

一道变态的面试题:

不能创建临时变量(第三个变量),实现两个数的交换。

#include <stdio.h>
int main()
{
  int a = 10;
  int b = 20;
  a = a^b;
  b = a^b;
  a = a^b;
  printf("a = %d b = %d\n", a, b);
  return 0;
}

练习1:编写代码实现:求一个整数存储在内存中的二进制中1的个数。

#include <stdio.h>
int main()
{
  int num = 10;
  int count= 0; //计数
  while(num)
  {
  if(num%2 == 1)
  count++;
  num = num/2;
  }
  printf("二进制中1的个数 = %d\n", count);
  return 0;
}
//思考这样的实现方式有没有问题?
//方法2:
#include <stdio.h>
int main()
{
  int num = -1;
  int i = 0;
  int count = 0; //计数
  for(i=0; i<32; i++)
  {
  if( num & (1 << i) )
  count++;
}
printf("二进制中1的个数 = %d\n",count);
return 0;
}
//思考还能不能更加优化,这里必须循环32次的。
//方法3:
#include <stdio.h>
int main()
{
  int num = -1;
  int i = 0;
  int count = 0; //计数
  while(num)
  {
  count++;
  num = num&(num-1);
  }
  printf("二进制中1的个数 = %d\n",count);
  return 0;
}

练习2:二进制位置0或者置1

编写代码将13二进制序列的第5位修改为1,然后再改回0

13的2进制序列: 00000000000000000000000000001101
将第5位置为1后:00000000000000000000000000011101
将第5位再置为0:00000000000000000000000000001101
#include <stdio.h>
int main()
{
  int a = 13;
  a = a | (1<<4);
  printf("a = %d\n", a);
  a = a & ~(1<<4);
  printf("a = %d\n", a);
  return 0;
}

6. 单目操作符

单目操作符有这些:

!、++、--、&、*、+、-、~ 、sizeof、(类型)

7. 逗号表达式

exp1, exp2, exp3, …expN

逗号表达式,就是用逗号隔开的多个表达式。

逗号表达式,从左向右依次执行。整个表达式的结果是最后一个表达式的结果。

//代码1
int a = 1;
int b = 2;
int c = (a>b, a=b+10, a, b=a+1); //逗号表达式c是多少?
//代码2
if (a =b + 1, c=a / 2, d > 0)
//代码3
a = get_val();
count_val(a);
while (a > 0)
{
//业务处理
a = get_val();
count_val(a);
}
如果使用逗号表达式,改写:
while (a = get_val(), count_val(a), a>0)
{
//业务处理
}

8. 下标访问[ ]、函数调用( )

8.1 [ ] 下标引用操作符

操作数:一个数组名 + 一个索引值

int arr[10]; //创建数组
arr[9] = 10; //实用下标引用操作符。
[ ]的两个操作数是arr和9。

8.2 函数调用操作符

接受一个或者多个操作数:第一个操作数是函数名,剩余的操作数就是传递给函数的参数。

#include <stdio.h>
void test1()
{
  printf("hehe\n");
}
void test2(const char *str)
{
  printf("%s\n", str);
}
int main()
{
  test1(); //这里的()就是作为函数调用操作符。
  test2("hello bit."); //这里的()就是函数调用操作符。
  return 0;
}

9. 结构成员访问操作符

9.1 结构体

C语言已经提供了内置类型,如:char、short、int、long、float、double等,但是只有这些内置类 型还是不够的,假设我想描述学生,描述一本书,这时单一的内置类型是不行的。描述一个学生需要 名字、年龄、学号、身高、体重等;描述一本书需要作者、出版社、定价等。C语言为了解决这个问 题,增加了结构体这种自定义的数据类型,让程序员可以自己创造适合的类型。

结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量,

如:标量、数组、指针,甚至是其他结构体。

9.1.1 结构的声明

struct tag
{
  member-list;
}variable-list;

描述一个学生:

struct Stu
{
  char name[20]; //名字
  int age; //年龄
  char sex[5]; //性别
  char id[20]; //学号
}; //分号不能丢

9.1.2 结构体变量的定义和初始化

//代码1:变量的定义
struct Point
{
  int x;
  int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2
//代码2:初始化。
struct Point p3 = {10, 20};
struct Stu //类型声明
{
  char name[15]; //名字
  int age; //年龄
};
  struct Stu s1 = {"zhangsan", 20}; //初始化
  struct Stu s2 = {.age=20, .name="lisi"}; //指定顺序初始化
//代码3
struct Node
{
  int data;
  struct Point p;
  struct Node* next;
}n1 = {10, {4,5}, NULL}; //结构体嵌套初始化
  struct Node n2 = {20, {5, 6}, NULL}; //结构体嵌套初始化

9.2 结构成员访问操作符

9.2.1 结构体成员的直接访问

结构体成员的直接访问是通过点操作符(.)访问的。点操作符接受两个操作数。如下所示:

#include <stdio.h>
struct Point
{
  int x;
  int y;
}p = {1,2};
int main()
{
  printf("x: %d y: %d\n", p.x, p.y);
  return 0;
}

使用方式:结构体变量.成员名

9.2.2 结构体成员的间接访问

有时候我们得到的不是一个结构体变量,而是得到了一个指向结构体的指针。如下所示:

#include <stdio.h>
struct Point
{
  int x;
  int y;
};
int main()
{
  struct Point p = {3, 4};
  struct Point *ptr = &p;
  ptr->x = 10;
  ptr->y = 20;
  printf("x = %d y = %d\n", ptr->x, ptr->y);
  return 0;
}
#include <stdio.h>
#include <string.h>
struct Stu
{
  char name[15]; //名字
  int age; //年龄
};
void print_stu(struct Stu s)
{
  printf("%s %d\n", s.name, s.age);
}
void set_stu(struct Stu* ps)
{
  strcpy(ps->name, "李四");
  ps->age = 28;
}
int main()
{
  struct Stu s = { "张三", 20 };
  print_stu(s);
  set_stu(&s);
  print_stu(s);
  return 0;
}

10. 操作符的属性:优先级、结合性

C语言的操作符有2个重要的属性:优先级、结合性,这两个属性决定了表达式求值的计算顺序。

10.1 优先级

优先级指的是,如果一个表达式包含多个运算符,哪个运算符应该优先执行。各种运算符的优先级是不一样的。

3 + 4 * 5;

上面示例中,表达式 3 + 4 * 5 里面既有加法运算符( + ),又有乘法运算符( * )。由于乘法

的优先级高于加法,所以会先计算 4 * 5 ,而不是先计算 3 + 4 。

10.2 结合性

如果两个运算符优先级相同,优先级没办法确定先计算哪个了,这时候就看结合性了,则根据运算符是左结合,还是右结合,决定执行顺序。大部分运算符是左结合(从左到右执行),少数运算符是右结合(从右到左执行),比如赋值运算符( = )。

5 * 6 / 2;

上面示例中, * 和 / 的优先级相同,它们都是左结合运算符,所以从左到右执行,先计算 5 * 6 ,再计算 6 / 2 。

运算符的优先级顺序很多,下面是部分运算符的优先级顺序(按照优先级从高到低排列),建议记住这些操作符的优先级就行,其他操作符在使用的时候查看下面表格就可以了。

  • 圆括号( ( )
  • 自增运算符( ++ ),自减运算符( --
  • 单目运算符( + 和 -
  • 乘法( * ),除法( /
  • 加法( + ),减法( -
  • 关系运算符( < 、 > 等
  • 赋值运算符( =

由于圆括号的优先级最高,可以使用它改变其他运算符的优先级。

10.3 优先级大全

优先级 运算符 名称或含义 使用形式 结合方向 说明
1 [ ] 数组下标 数组名[常量表达式] 左到右
1 ( ) 圆括号 (表达式)/函数名(形参表) 左到右
1 . 成员选择(对象) 对象.成员名 左到右
1 -> 成员选择(指针) 对象指针->成员名 左到右
2 - 负号运算符 -表达式 右到左 单目运算符
2 ~ 按位取反运算符 ~表达式 右到左 单目运算符
2 ++ 自增运算符 ++变量名/变量名++ 右到左 单目运算符
2 自减运算符 –变量名/变量名– 右到左 单目运算符
2 * 取值运算符 *指针变量 右到左 单目运算符
2 & 取地址运算 &变量名 右到左 单目运算符
2 ! 逻辑非运算符 !表达式 右到左 单目运算符
2 (类型) 强制类型转换 (数据类型)表达式 右到左
2 sizeof 长度运算符 sizeof(表达式) 右到左
3 / 表达式/表达式 左到右 双目运算符
3 * 表达式*表达式 左到右 双目运算符
3 % 余数(取模) 整型表达式%整型表达式 左到右 双目运算符
4 + 表达式+表达式 左到右 双目运算符
4 - 表达式-表达式 左到右 双目运算符
5 << 左移 变量<<表达式 左到右 双目运算符
5 >> 右移 变量>>表达式 左到右 双目运算符
6 > 大于 表达式>表达式 左到右 双目运算符
6 < 小于 表达式<表达式 左到右 双目运算符
6 <= 小于等于 表达式<=表达式 左到右 双目运算符
7 == 等于 表达式==表达式 左到右 双目运算符
7 = 不等于 表达式!= 表达式 左到右 双目运算符
8 & 按位与 表达式&表达式 左到右 双目运算符
9 ^ 按位异或 表达式^表达式 左到右 双目运算符
10 | 按位或 表达式|表达式 左到右 双目运算符
11 && 逻辑与 表达式&&表达式 左到右 双目运算符
12 || 逻辑或 表达式||表达式 左到右 双目运算符
13 ?: 条件运算符 表达式1?表达式2: 表达式3 右到左 三目运算符
14 = 赋值运算符 变量=表达式 右到左
14 /= 除后赋值 变量/=表达式 右到左
14 *= 乘后赋值 变量*=表达式 右到左
14 %= 取模后赋值 变量%=表达式 右到左
14 += 加后赋值 变量+=表达式 右到左
14 -= 减后赋值 变量-=表达式 右到左
14 <<= 左移后赋值 变量<<=表达式 右到左
14 >>= 右移后赋值 变量>>=表达式 右到左
14 &= 按位与后赋值 变量&=表达式 右到左
14 ^= 按位异或后赋值 变量^=表达式 右到左
14 |= 按位或后赋值 变量|=表达式 右到左
15 逗号运算符 表达式,表达式,… 左到右

说明:

同一优先级的运算符,运算次序由结合方向所决定。

简单记就是:! > 算术运算符 > 关系运算符 > && > || > 赋值运算符

11. 表达式求值

11.1 整型提升

C语言中整型算术运算总是至少以缺省整型类型的精度来进行的。

为了获得这个精度,表达式中的字符和短整型操作数在使用之前被转换为普通整型,这种转换称为整型提升。

整型提升的意义:

表达式的整型运算要在CPU的相应运算器件内执行,CPU内整型运算器(ALU)的操作数的字节长度一般就是int的字节长度,同时也是CPU的通用寄存器的长度。

因此,即使两个char类型的相加,在CPU执行时实际上也要先转换为CPU内整型操作数的标准长度。

通用CPU(general-purpose CPU)是难以直接实现两个8比特字节直接相加运算(虽然机器指令中 可能有这种字节相加指令)。所以,表达式中各种长度可能小于int长度的整型值,都必须先转换为 int或unsigned int,然后才能送入CPU去执行运算。

//实例1
char a,b,c;
...
a = b + c;

b和c的值被提升为普通整型,然后再执行加法运算。 加法运算完成之后,结果将被截断,然后再存储于a中。 如何进行整体提升呢?

  1. 有符号整数提升是按照变量的数据类型的符号位来提升的
  2. 无符号整数提升,高位补0
//负数的整形提升
char c1 = -1;
变量c1的二进制位(补码)中只有8个比特位:
1111111
因为 char 为有符号的 char
所以整形提升的时候,高位补充符号位,即为1提升之后的结果是:
11111111111111111111111111111111
//正数的整形提升
char c2 = 1;
变量c2的二进制位(补码)中只有8个比特位:00000001
因为 char 为有符号的 char
所以整形提升的时候,高位补充符号位,即为0提升之后的结果是:00000000000000000000000000000001
//无符号整形提升,高位补0

11.2 算术转换

如果某个操作符的各个操作数属于不同的类型,那么除非其中一个操作数的转换为另一个操作数的类型,否则操作就无法进行。下面的层次体系称为寻常算术转换。

long double
double
float
unsigned long int
long int
unsigned int
int

如果某个操作数的类型在上面这个列表中排名靠后,那么首先要转换为另外一个操作数的类型后执行运算

11.3 问题表达式解析

11.3.1 表达式1

//表达式的求值部分由操作符的优先级决定。
//表达式1
a*b + c*d + e*f

表达式1在计算的时候,由于* 比 + 的优先级高,只能保证,*的计算是比 + 早,但是优先级并不 能决定第三个 * 比第一个 + 早执行。

所以表达式的计算机顺序就可能是

或者

11.3.2 表达式2

//表达式2
c + --c;

同上,操作符的优先级只能决定自减 – 的运算在 + 的运算的前面,但是我们并没有办法得知, + 操作符的左操作数的获取在右操作数之前还是之后求值,所以结果是不可预测的,是有歧义的。

11.3.3 表达式3

//表达式3
int main()
{
  int i = 10;
    i = i-- - --i * ( i = -3 ) * i++ + ++i;
  printf("i = %d\n", i);
  return 0;
}

表达式3在不同编译器中测试结果:非法表达式程序的结果

11.3.4 表达式4

#include <sdtio.h>
int fun()
{
  static int count = 1;
  return ++count;
}
int main()
{
  int answer;
  answer = fun() - fun() * fun();
  printf( "%d\n", answer); //输出多少?
  return 0;
}

这个代码有没有实际的问题?有问题!

虽然在大多数的编译器上求得结果都是相同的。

但是上述代码 answer = fun() - fun() * fun(); 中我们只能通过操作符的优先级得知:先算乘法,再算减法。

函数的调用先后顺序无法通过操作符的优先级确定。

11.3.5 表达式5:

//表达式5
#include <stdio.h>
int main()
{
  int i = 1;
  int ret = (++i) + (++i) + (++i);
  printf("%d\n", ret);
  printf("%d\n", i);
  return 0;
}
//尝试在linux 环境gcc编译器,VS2013环境下都执行,看结果。

gcc编译器执行结果:

VS2022运行结果:

看看同样的代码产生了不同的结果,这是为什么? 简单看一下汇编代码,就可以分析清楚.

这段代码中的第一个 + 在执行的时候,第三个++是否执行,这个是不确定的,因为依靠操作符的优先级和结合性是无法决定第一个 + 和第三个前置 ++ 的先后顺序。


总结

即使有了操作符的优先级和结合性,我们写出的表达式依然有可能不能通过操作符的属性确定唯一的 计算路径,那这个表达式就是存在潜在风险的,建议不要写出特别负责的表达式。

相关文章
|
4天前
|
C语言
C语言之操作符1
C语言之操作符1
12 0
|
5天前
|
编译器 C语言
操作符详解(C语言基础深入解析)
操作符详解(C语言基础深入解析)
|
19天前
|
存储 编译器 C语言
爱上C语言:操作符详解(下)
爱上C语言:操作符详解(下)
|
8天前
|
存储 自然语言处理 编译器
振南技术干货集:振南当年入门C语言和单片机的那些事儿(3)
振南技术干货集:振南当年入门C语言和单片机的那些事儿(3)
|
4天前
|
编译器 C语言
C语言操作符2
C语言操作符2
4 0
|
5天前
|
存储 算法 程序员
C语言:深入探索与实战应用
C语言:深入探索与实战应用
11 0
|
5天前
|
编译器 C语言
函数深入解析(C语言基础入门)
函数深入解析(C语言基础入门)
|
5天前
|
C语言
数组深入剖析(C语言基础入门)
数组深入剖析(C语言基础入门)
|
5天前
|
C语言
条件操作符和逻辑操作符(C语言零基础教程)
条件操作符和逻辑操作符(C语言零基础教程)
|
8天前
|
算法 C语言 芯片
振南技术干货集:振南当年入门C语言和单片机的那些事儿(1)
振南技术干货集:振南当年入门C语言和单片机的那些事儿(1)