【状态压缩】【动态规划】【C++算法】1125.最小的必要团队

简介: 【状态压缩】【动态规划】【C++算法】1125.最小的必要团队

作者推荐

【广度优先搜索】【网格】【割点】【 推荐】1263. 推箱子

本文涉及知识点

动态规划汇总

状态压缩

LeetCode1125. 最小的必要团队

作为项目经理,你规划了一份需求的技能清单 req_skills,并打算从备选人员名单 people 中选出些人组成一个「必要团队」( 编号为 i 的备选人员 people[i] 含有一份该备选人员掌握的技能列表)。

所谓「必要团队」,就是在这个团队中,对于所需求的技能列表 req_skills 中列出的每项技能,团队中至少有一名成员已经掌握。可以用每个人的编号来表示团队中的成员:

例如,团队 team = [0, 1, 3] 表示掌握技能分别为 people[0],people[1],和 people[3] 的备选人员。

请你返回 任一 规模最小的必要团队,团队成员用人员编号表示。你可以按 任意顺序 返回答案,题目数据保证答案存在。

示例 1:

输入:req_skills = [“java”,“nodejs”,“reactjs”], people = [[“java”],[“nodejs”],[“nodejs”,“reactjs”]]

输出:[0,2]

示例 2:

输入:req_skills = [“algorithms”,“math”,“java”,“reactjs”,“csharp”,“aws”], people = [[“algorithms”,“math”,“java”],[“algorithms”,“math”,“reactjs”],[“java”,“csharp”,“aws”],[“reactjs”,“csharp”],[“csharp”,“math”],[“aws”,“java”]]

输出:[1,2]

提示:

1 <= req_skills.length <= 16

1 <= req_skills[i].length <= 16

req_skills[i] 由小写英文字母组成

req_skills 中的所有字符串 互不相同

1 <= people.length <= 60

0 <= people[i].length <= 16

1 <= people[i][j].length <= 16

people[i][j] 由小写英文字母组成

people[i] 中的所有字符串 互不相同

people[i] 中的每个技能是 req_skills 中的技能

题目数据保证「必要团队」一定存在

动态规划

状态压缩

利用哈希map将字符串转成数字。方便状态压缩。mask &(1 <<i ) 表示第i个技能已经具备。

动态规划的状态

pre[mask] 从前i个人员中选择具备mask技能的最少人数。

dp[mask] 从前i+1个人员中选择具备mask技能的最少人数。

动态规划的转移方程

const int iNewMask = preMask | curMask;

人数必定+1。

动态规划的初始状态

pre[0]=0,其它1000,表示此种状态不存在。

动态规划的填表顺序

依次处理各人员。

动态规划的返回值

vResut[mask] 记录: 转移之前的状态和最后选择的人员。

代码

核心代码

class Solution {
public:
  vector<int> smallestSufficientTeam(vector<string>& req_skills, vector<vector<string>>& people) {
    unordered_map<string, int> mStrIndex;
    for (const auto& s : req_skills)
    {
      if (!mStrIndex.count(s))
      {
        mStrIndex[s] = mStrIndex.size();
      }
    }
    const int iMaskCount = 1 << mStrIndex.size();
    vector<int> pre(iMaskCount, 1000);
    vector<pair<int, int>> vResult(iMaskCount);
    pre[0] = 0;
    int cur = -1;
    for (const auto& v : people)
    {
      cur++;
      int curMask = 0;
      for (const string& s : v)
      {
        if (mStrIndex.count(s))
        {
          curMask |= (1 << mStrIndex[s]);
        }
      }
      auto dp = pre;//不选择当前人员
      for (int preMask = 0; preMask < iMaskCount; preMask++)
      {
        const int iNewMask = preMask | curMask;
        if (pre[preMask] + 1 < dp[iNewMask])
        {
          dp[iNewMask] = pre[preMask] + 1;
          vResult[iNewMask] = std::make_pair(preMask, cur);
        }
      }
      pre.swap(dp);
    }
    vector<int> vRet;
    for (int mask = iMaskCount - 1; mask > 0; )
    {
      vRet.emplace_back(vResult[mask].second);
      mask = vResult[mask].first;
    }
    return vRet;
  }
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
  assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
  if (v1.size() != v2.size())
  {
    assert(false);
    return;
  }
  for (int i = 0; i < v1.size(); i++)
  {
    Assert(v1[i], v2[i]);
  }
}
int main()
{ 
  vector<string> req_skills;
  vector<vector<string>> people;
  {
    Solution sln;
    req_skills = { "java","nodejs","reactjs" }, people = { {"java"},{"nodejs"},{"nodejs","reactjs"} };
    auto res = sln.smallestSufficientTeam(req_skills, people);    
  //  Assert(vector<int>{0, 2}, res);
  }
  {
    Solution sln;
    req_skills = { "algorithms","math","java","reactjs","csharp","aws" }, people = { {"algorithms","math","java"},{"algorithms","math","reactjs"},{"java","csharp","aws"},{"reactjs","csharp"},{"csharp","math"},{"aws","java"} };
    auto res = sln.smallestSufficientTeam(req_skills, people);
    //Assert(vector<int>{1, 2}, res);
  }
}

2023年1月 第一版

class Solution {

public:

vector smallestSufficientTeam(vector& req_skills, vector<vector>& people) {

m_iBitNum = req_skills.size();

m_iMaskNum = (1 << m_iBitNum);

for (const auto& s : req_skills)

{

m_mSkillNameToIndex[s] = m_mSkillNameToIndex.size();

}

std::unordered_map<int,int> pre;

pre[0] = 0;

std::unordered_map<int, vector> preIndex(1);

for (int i = 0; i < people.size();i++ )

{

const auto& v = people[i];

std::unordered_map<int, int> dp = pre;

std::unordered_map<int, vector> dpIndex = preIndex;

for (const auto& pr : pre)

{

int iNewMask = pr.first;

for (const auto& s : v)

{

iNewMask |= (1 << m_mSkillNameToIndex[s]);

}

const int iNewNum = pr.second + 1;

if ((!dp.count(iNewMask)) || (iNewNum < dp[iNewMask]))

{

dp[iNewMask] = iNewNum;

dpIndex[iNewMask] = preIndex[pr.first];

dpIndex[iNewMask].push_back(i);

}

}

pre.swap(dp);

preIndex.swap(dpIndex);

}

return preIndex[m_iMaskNum - 1];

}

int m_iMaskNum;

int m_iBitNum;

std::unordered_map<string, int> m_mSkillNameToIndex;

};

2023年1月第二版

class Solution {

public:

vector smallestSufficientTeam(vector& req_skills, vector<vector>& people) {

m_iBitNum = req_skills.size();

m_iMaskNum = (1 << m_iBitNum);

for (const auto& s : req_skills)

{

m_mSkillNameToIndex[s] = m_mSkillNameToIndex.size();

}

std::vector pre(m_iMaskNum,1000);

pre[0] = 0;

std::vector<vector> preIndex(m_iMaskNum);

for (int i = 0; i < people.size();i++ )

{

const auto& v = people[i];

std::vector dp = pre;

std::vector<vector> dpIndex = preIndex;

for (int iMask = 0; iMask < m_iMaskNum; iMask++ )

{

int iNewMask = iMask;

for (const auto& s : v)

{

iNewMask |= (1 << m_mSkillNameToIndex[s]);

}

const int iNewNum = pre[iMask] + 1;

if (iNewNum < dp[iNewMask])

{

dp[iNewMask] = iNewNum;

dpIndex[iNewMask] = preIndex[iMask];

dpIndex[iNewMask].push_back(i);

}

}

pre.swap(dp);

preIndex.swap(dpIndex);

}

return preIndex[m_iMaskNum - 1];

}

int m_iMaskNum;

int m_iBitNum;

std::unordered_map<string, int> m_mSkillNameToIndex;

};

2023年1月 第3版

class Solution {

public:

vector smallestSufficientTeam(vector& req_skills, vector<vector>& people) {

m_iBitNum = req_skills.size();

m_iMaskNum = (1 << m_iBitNum);

for (const auto& s : req_skills)

{

m_mSkillNameToIndex[s] = m_mSkillNameToIndex.size();

}

vector vPeoMask;

for (const auto& v : people)

{

int iMask = 0;

for (const auto& s : v)

{

iMask |= (1 << m_mSkillNameToIndex[s]);

}

vPeoMask.push_back(iMask);

}

std::vector pre(m_iMaskNum,1000);

pre[0] = 0;

std::vector preIndex(m_iMaskNum);

for (int i = 0; i < people.size();i++ )

{

const auto& v = people[i];

std::vector dp = pre;

std::vector dpIndex = preIndex;

for (int iMask = 0; iMask < m_iMaskNum; iMask++ )

{

if (1000 == pre[iMask])

{

continue;

}

const int iNewMask = iMask | vPeoMask[i];

if (iNewMask == iMask)

{

continue;

}

const int iNewNum = pre[iMask] + 1;

if (iNewNum < dp[iNewMask])

{

dp[iNewMask] = iNewNum;

auto llNewPeoMask = (1LL) << i;

dpIndex[iNewMask] = preIndex[iMask] | llNewPeoMask;

}

}

pre.swap(dp);

preIndex.swap(dpIndex);

}

vector ret;

for (int i = 0; i < people.size(); i++)

{

const auto llNewPeoMask = (1LL) << i;

if (llNewPeoMask & preIndex[m_iMaskNum - 1])

{

ret.push_back(i);

}

}

return ret;

}

int m_iMaskNum;

int m_iBitNum;

std::unordered_map<string, int> m_mSkillNameToIndex;

};


目录
打赏
0
1
1
0
36
分享
相关文章
解读 C++ 助力的局域网监控电脑网络连接算法
本文探讨了使用C++语言实现局域网监控电脑中网络连接监控的算法。通过将局域网的拓扑结构建模为图(Graph)数据结构,每台电脑作为顶点,网络连接作为边,可高效管理与监控动态变化的网络连接。文章展示了基于深度优先搜索(DFS)的连通性检测算法,用于判断两节点间是否存在路径,助力故障排查与流量优化。C++的高效性能结合图算法,为保障网络秩序与信息安全提供了坚实基础,未来可进一步优化以应对无线网络等新挑战。
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
45 15
公司局域网管理中的哈希表查找优化 C++ 算法探究
在数字化办公环境中,公司局域网管理至关重要。哈希表作为一种高效的数据结构,通过哈希函数将关键值(如IP地址、账号)映射到数组索引,实现快速的插入、删除与查找操作。例如,在员工登录验证和设备信息管理中,哈希表能显著提升效率,避免传统线性查找的低效问题。本文以C++为例,展示了哈希表在局域网管理中的具体应用,包括设备MAC地址与IP分配的存储与查询,并探讨了优化哈希函数和扩容策略,确保网络管理高效准确。
员工屏幕监控系统之 C++ 图像差分算法
在现代企业管理中,员工屏幕监控系统至关重要。本文探讨了其中常用的图像差分算法,该算法通过比较相邻两帧图像的像素差异,检测屏幕内容变化,如应用程序切换等。文中提供了C++实现代码,并介绍了其在实时监控、异常行为检测和数据压缩等方面的应用,展示了其实现简单、效率高的特点。
61 15
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
62 12
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
在数字化办公时代,公司监控上网软件成为企业管理网络资源和保障信息安全的关键工具。本文深入剖析C++中的链表数据结构及其在该软件中的应用。链表通过节点存储网络访问记录,具备高效插入、删除操作及节省内存的优势,助力企业实时追踪员工上网行为,提升运营效率并降低安全风险。示例代码展示了如何用C++实现链表记录上网行为,并模拟发送至服务器。链表为公司监控上网软件提供了灵活高效的数据管理方式,但实际开发还需考虑安全性、隐私保护等多方面因素。
25 0
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
探秘:基于 C++ 的局域网电脑控制软件自适应指令分发算法
在现代企业信息化架构中,局域网电脑控制软件如同“指挥官”,通过自适应指令分发算法动态调整指令发送节奏与数据量,确保不同性能的终端设备高效运行。基于C++语言,利用套接字实现稳定连接和线程同步管理,结合实时状态反馈,优化指令分发策略,提升整体管控效率,保障网络稳定,助力数字化办公。
75 19
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
70 2
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
39 16

热门文章

最新文章