【动态规划】【C++算法】1563 石子游戏 V

简介: 【动态规划】【C++算法】1563 石子游戏 V

作者推荐

【数位dp】【动态规划】【状态压缩】【推荐】1012. 至少有 1 位重复的数字

本文涉及知识点

动态规划汇总

LeetCoce:1563 石子游戏 V

几块石子 排成一行 ,每块石子都有一个关联值,关联值为整数,由数组 stoneValue 给出。

游戏中的每一轮:Alice 会将这行石子分成两个 非空行(即,左侧行和右侧行);Bob 负责计算每一行的值,即此行中所有石子的值的总和。Bob 会丢弃值最大的行,Alice 的得分为剩下那行的值(每轮累加)。如果两行的值相等,Bob 让 Alice 决定丢弃哪一行。下一轮从剩下的那一行开始。

只 剩下一块石子 时,游戏结束。Alice 的分数最初为 0 。

返回 Alice 能够获得的最大分数 。

示例 1:

输入:stoneValue = [6,2,3,4,5,5]

输出:18

解释:在第一轮中,Alice 将行划分为 [6,2,3],[4,5,5] 。左行的值是 11 ,右行的值是 14 。Bob 丢弃了右行,Alice 的分数现在是 11 。

在第二轮中,Alice 将行分成 [6],[2,3] 。这一次 Bob 扔掉了左行,Alice 的分数变成了 16(11 + 5)。

最后一轮 Alice 只能将行分成 [2],[3] 。Bob 扔掉右行,Alice 的分数现在是 18(16 + 2)。游戏结束,因为这行只剩下一块石头了。

示例 2:

输入:stoneValue = [7,7,7,7,7,7,7]

输出:28

示例 3:

输入:stoneValue = [4]

输出:0

提示:

1 <= stoneValue.length <= 500

1 <= stoneValue[i] <= 106

动态规划

原理

石头数相等,和大的不一定更优。比如:{1,19}劣于{8,8}。

n堆石头在右边增加一堆后,不一定更优。比如:{16,1,8,8} → \rightarrow {8,8} → \rightarrow {8} 总共24分。

{16,1,8,8,2} → \rightarrow {16,1} → \rightarrow {1} 总共17 分。

动态规划的状态表示

dp[i][j] 表示stonevalue[i,j]的最大得分

状态数:O(nn),故空间复杂度:O(nn)

动态规划的转移方程

如果暴力转移,总时间复杂度是O(n3)。

dp2[i][j] = m a x m : i j \Large max_{m:i}^jmaxm:ij(dp[i][m]+sum[i,m])

dp3[i][j=]m a x m : j i \Large max_{m:j}^imaxm:ji(dp[m][j]+sum[m,j])

转移dp[i][j]时,分三种情况:

左边小于右边:通过dp2转移。

两者相等,直接计算。

左边大于右边,通过dp3转移。

动态规划的初始值

全部为0。

动态规划的填表顺序

第一层循环,枚举长度len,从2到大。第二层循环枚举i。

动态规划的返回值

dp[0].back()

代码

核心代码

class Solution{
public:
  int stoneGameV(vector<int>&stoneValue) {
    m_c = stoneValue.size();
    vector <vector<int>> dp(m_c, vector<int>(m_c)), dp2(m_c, vector<int>(m_c)), dp3(m_c, vector<int>(m_c));
    for (int i = 0; i < m_c; i++)
    {
      dp2[i][i] = dp3[i][i] = stoneValue[i];
    }
    for (int len = 2; len <= m_c; len++)
    {     
      int leftSum = 0;
      int totalSum = std::accumulate(stoneValue.begin(), stoneValue.begin() + len,0);
      for (int i = 0,i1=0; i + len <= m_c; i++)
      {更新dp leftSum = stone[i,i1)之和  totalSum= stone[i,j]之和
        const int j = i + len - 1;
        if (i1 < i)
        {
          i1++;
        }
        while ((leftSum + stoneValue[i1]) * 2 < totalSum)
        {
          leftSum += stoneValue[i1++];
        }
        auto& cur = dp[i][j];
        if (i1-1 >= i )
        {
          cur = dp2[i][i1-1];
        }
        int j1 = i1;
        if ((leftSum + stoneValue[i1]) * 2 == totalSum)
        {
          cur = max(cur, dp[i][i1]+ totalSum/2);
          cur = max(cur, dp[i1 + 1][j] + totalSum / 2);
          j1++;
        }
        if (j >= j1+1)
        {
          cur = max(cur, dp3[j1 + 1][j]);
        }
        //更新dp2
        dp2[i][j] = max(dp2[i][j-1], cur + totalSum);
        //更新dp3
        dp3[i][j] = max(dp3[i+1][j],cur + totalSum);
        if (i1 > i)
        {
          leftSum -= stoneValue[i];
        }
        totalSum -= stoneValue[i];
        if (i + len < m_c)
        {
          totalSum += stoneValue[i + len];
        }
      }     
    }
    return dp[0].back();
  }
  int m_c;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
  assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
  if (v1.size() != v2.size())
  {
    assert(false);
    return;
  }
  for (int i = 0; i < v1.size(); i++)
  {
    Assert(v1[i], v2[i]);
  }
}
int main()
{ 
  vector<int> stoneValue;
  {
    Solution sln;
    stoneValue = { 4 };
    auto res = sln.stoneGameV(stoneValue);
    Assert(res, 0);
  }
  {
    Solution sln;
    stoneValue = { 2,1,1 };
    auto res = sln.stoneGameV(stoneValue);
    Assert(res, 3);
  }
  {
    Solution sln;
    stoneValue = { 7,7,7 };
    auto res = sln.stoneGameV(stoneValue);
    Assert(res, 7);
  }
  {
    Solution sln;
    stoneValue = { 7,7,7,7,7,7,7 };
    auto res = sln.stoneGameV(stoneValue);
    Assert(res, 28);
  }
  
  {
    Solution sln;
    stoneValue = { 6, 2, 3, 4, 5, 5 };
    auto res = sln.stoneGameV(stoneValue);
    Assert(res, 18);
  }
  {
    Solution sln;
    stoneValue = { 98,77,24,49,6,12,2,44,51,96 };
    auto res = sln.stoneGameV(stoneValue);
    Assert(res, 330);
  }
}

2023年2月

class Solution {

public:

int stoneGameV(const vector& stoneValue) {

m_stoneValue = stoneValue;

m_c = m_stoneValue.size();

m_vSums.push_back(0);

for (int i = 0; i < m_c; i++)

{

m_vSums.push_back(m_vSums[i] + stoneValue[i]);

}

m_vMaxValue.assign(m_c, vector(m_c,-1));

return dfs(0, m_c - 1);

}

int dfs(const int iBegin, const int iEnd)

{

if (-1 != m_vMaxValue[iBegin][iEnd])

{

return m_vMaxValue[iBegin][iEnd];

}

if (iBegin == iEnd)

{

return m_vMaxValue[iBegin][iEnd] = 0;

}

int iTotal = m_vSums[iEnd + 1] - m_vSums[iBegin];

int iLeftSumMul2SumTotal = -iTotal;

int iMaxValue = 0;

for (int i = iBegin; i < iEnd; i++)

{

iLeftSumMul2SumTotal += m_stoneValue[i] * 2;

const int iLeftAdd = m_vSums[i + 1] - m_vSums[iBegin];

const int iRightAdd = m_vSums[iEnd + 1] - m_vSums[i+1];

if (iLeftSumMul2SumTotal <= 0)

{

iMaxValue = max(iMaxValue, dfs(iBegin, i) + iLeftAdd );

}

if ( iLeftSumMul2SumTotal >= 0)

{

iMaxValue = max(iMaxValue, dfs(i + 1, iEnd) + iRightAdd);

}

}

return m_vMaxValue[iBegin][iEnd] = iMaxValue;

}

int m_c;

vector m_vSums;

std::vector<vector> m_vMaxValue;

vector m_stoneValue;

};

2023年7月

class Solution {

public:

int stoneGameV(vector& stoneValue) {

m_c = stoneValue.size();

vector<vector> vLeftRight(m_c, vector(m_c + 1));//左闭右开

vector<vector> vLeftPre(m_c, vector(m_c )), vRightPre(m_c, vector(m_c));//左闭右闭

for (int i = 0; i < m_c; i++)

{

vLeftPre[i][i] = vRightPre[i][i] = stoneValue[i];

}

for (int left = m_c-1 ; left >=0 ; left–)

{

int i = left ;

int iLeftSum = 0;//记录[left,i)总石头数量

int iSum = stoneValue[left];//记录[left,right)的总石头数量

for (int right = left + 2; right <= m_c; right++)

{

iSum += stoneValue[right-1];

//确保[left,i)的石头数小于等于[i,right) [i,right)不为空 的前提下,i的最大值

while ((i < right) && ((iLeftSum + stoneValue[i]) * 2 <= iSum))

{

iLeftSum += stoneValue[i];

i++;

}

if (iLeftSum * 2 == iSum)

{

vLeftRight[left][right] = max( vLeftPre[left][i - 1], vRightPre[i][right - 1]);

}

else

{

const int iRightI = i + 1;

vLeftRight[left][right] = max((i == left ) ? 0 : vLeftPre[left][i - 1], (iRightI >= right) ? 0 : vRightPre[iRightI][right - 1]);

}

vLeftPre[left][right - 1] = max(vLeftRight[left][right]+iSum, vLeftPre[left][right - 2]);

vRightPre[left][right-1] = max(vLeftRight[left][right] +iSum, (0==left)?0:vRightPre[left+1][right - 1]);

}

}

return vLeftRight.front().back();

}

int m_c;

};


相关文章
|
1月前
|
负载均衡 算法 安全
探秘:基于 C++ 的局域网电脑控制软件自适应指令分发算法
在现代企业信息化架构中,局域网电脑控制软件如同“指挥官”,通过自适应指令分发算法动态调整指令发送节奏与数据量,确保不同性能的终端设备高效运行。基于C++语言,利用套接字实现稳定连接和线程同步管理,结合实时状态反馈,优化指令分发策略,提升整体管控效率,保障网络稳定,助力数字化办公。
52 19
|
28天前
|
算法 Java C++
【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题
本文介绍了经典的0/1背包问题及其动态规划解法。
46 5
|
1月前
|
设计模式 IDE 编译器
【C++面向对象——类的多态性与虚函数】编写教学游戏:认识动物(头歌实践教学平台习题)【合集】
本项目旨在通过C++编程实现一个教学游戏,帮助小朋友认识动物。程序设计了一个动物园场景,包含Dog、Bird和Frog三种动物。每个动物都有move和shout行为,用于展示其特征。游戏随机挑选10个动物,前5个供学习,后5个用于测试。使用虚函数和多态实现不同动物的行为,确保代码灵活扩展。此外,通过typeid获取对象类型,并利用strstr辅助判断类型。相关头文件如&lt;string&gt;、&lt;cstdlib&gt;等确保程序正常运行。最终,根据小朋友的回答计算得分,提供互动学习体验。 - **任务描述**:编写教学游戏,随机挑选10个动物进行展示与测试。 - **类设计**:基类
32 3
|
1月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
49 2
|
2月前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
1月前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
2月前
|
算法 安全 C++
用 C++ 算法控制员工上网的软件,关键逻辑是啥?来深度解读下
在企业信息化管理中,控制员工上网的软件成为保障网络秩序与提升办公效率的关键工具。该软件基于C++语言,融合红黑树、令牌桶和滑动窗口等算法,实现网址精准过滤、流量均衡分配及异常连接监测。通过高效的数据结构与算法设计,确保企业网络资源优化配置与安全防护升级,同时尊重员工权益,助力企业数字化发展。
65 4
|
3月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
81 2
|
1天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。