Java并发基础:LinkedTransferQueue全面解析!

简介: LinkedTransferQueue类实现了高效的线程间数据传递,支持等待匹配的生产者-消费者模式,基于链表的无界设计使其在高并发场景下表现卓越,且无需担心队列溢出,丰富的方法和良好的可扩展性满足了各种复杂应用场景的需求。

Java并发基础:LinkedTransferQueue全面解析! - 程序员古德

内容概要

LinkedTransferQueue类实现了高效的线程间数据传递,支持等待匹配的生产者-消费者模式,基于链表的无界设计使其在高并发场景下表现卓越,且无需担心队列溢出,丰富的方法和良好的可扩展性满足了各种复杂应用场景的需求。

核心概念

LinkedTransferQueue 是一个高效、无界、基于链表的队列,它同时实现了 TransferQueue 接口和 BlockingQueue 接口,这个队列设计主要用于解决以下几类问题:

1、直接匹配生产者与消费者,LinkedTransferQueue 提供了一种机制,使得生产者可以将元素直接传输给等待消费的消费者,这意味着当调用 transfer(E e) 方法时,如果有一个消费者正等待接收元素,那么元素会立即从生产者转移给消费者,并且两个线程之间的交换无需锁或其他同步机制。

2、避免无效通知,在某些其他阻塞队列中,线程可能会由于操作系统或 JVM 的原因而意外地提前唤醒,这称为“虚假唤醒”,LinkedTransferQueue 使用自旋等优化技术来减少这种无效通知,从而提高效率。

3、非阻塞和阻塞操作的混合支持,除了基本的插入(offer)、移除(poll)和检查(peek)等操作外,还提供了额外的方法如 tryTransfer(E e) 和上面提到的 transfer(E e)transfer() 方法确保了元素被成功传输前不会释放资源,这对于实现FIFO传递非常有效。

4、高性能低延迟,LinkedTransferQueue 是无界的,但在大多数情况下表现得如同有界队列,因为它会尽力快速地将元素从生产者转移到消费者,避免无限制增长导致的内存溢出,其内部设计通过原子操作和 CAS 算法保证了高度的并发性能和较低的线程上下文切换开销。

总之,LinkedTransferQueue 主要针对那些需要高效、低延迟以及直接 producer-consumer 交互的并发场景,特别适合于工作窃取(work-stealing)算法或者任务传递系统中,它可以简化并发编程模型,降低同步复杂性和提高整体性能。

代码案例

下面是LinkedTransferQueue的简单代码案例,如下代码:

import java.util.concurrent.LinkedTransferQueue;  

public class LinkedTransferQueueDemo {
   
     

    public static void main(String[] args) {
   
     
        // 创建一个LinkedTransferQueue实例  
        LinkedTransferQueue<Integer> queue = new LinkedTransferQueue<>();  

        // 创建一个生产者线程  
        Thread producer = new Thread(() -> {
   
     
            try {
   
     
                for (int i = 0; i < 5; i++) {
   
     
                    System.out.println("生产者准备生产:" + i);  
                    // 将生产的数据放入队列,等待消费者接收  
                    queue.transfer(i);  
                    System.out.println("生产者生产完毕:" + i + ",等待消费者消费");  
                    Thread.sleep(500); // 模拟生产过程耗时  
                }  
            } catch (InterruptedException e) {
   
     
                Thread.currentThread().interrupt(); // 重新设置中断状态  
                e.printStackTrace();  
            }  
        });  

        // 创建一个消费者线程  
        Thread consumer = new Thread(() -> {
   
     
            try {
   
     
                for (int i = 0; i < 5; i++) {
   
     
                    // 从队列中取数据,如果没有数据可取,则该方法会阻塞  
                    Integer item = queue.take();  
                    System.out.println("消费者消费了:" + item);  
                    Thread.sleep(1000); // 模拟消费过程耗时  
                }  
            } catch (InterruptedException e) {
   
     
                Thread.currentThread().interrupt(); // 重新设置中断状态  
                e.printStackTrace();  
            }  
        });  

        // 启动消费者线程和生产者线程(注意启动顺序通常不重要,但这里先启动消费者以避免生产者阻塞)  
        consumer.start();  
        producer.start();  
    }  
}

运行输出如下类似结果:

消费者等待消费...  
生产者准备生产:0  
生产者生产完毕:0,等待消费者消费  
消费者消费了:0  
生产者准备生产:1  
生产者生产完毕:1,等待消费者消费  
消费者消费了:1  
... (以此类推,直到所有项目都被生产和消费)

核心API

LinkedTransferQueue 实现了一个基于链接节点的、线程安全的 TransferQueue 接口,该队列中的元素可以在生产者线程和消费者线程之间高效传输,LinkedTransferQueue 通常用于需要高效、线程安全的数据传输的场景,尤其是当生产和消费速率不一致时,下面是 LinkedTransferQueue 类中一些重要方法的含义:

  1. transfer(E e)
    • 将指定的元素传输给等待的消费者,并立即返回,如果当前没有等待的消费者,则该方法会阻塞,直到有消费者通过 take()receive() 方法接收元素。
  2. tryTransfer(E e)
    • 尝试将指定的元素传输给等待的消费者,并立即返回,如果没有等待的消费者,该方法不会阻塞,而是立即返回 false
  3. tryTransfer(E e, long timeout, TimeUnit unit)
    • 尝试在指定的时间内将元素传输给等待的消费者,如果在指定的时间内没有消费者接收元素,则该方法返回 false
  4. offer(E e)
    • 将指定的元素插入到队列中,如果队列已满,则立即返回 false,对于 LinkedTransferQueue,由于它是无界的,这个方法实际上永远不会因为队列满而失败,除非内存不足。
  5. offer(E e, long timeout, TimeUnit unit)
    • 将指定的元素插入到队列中,等待指定的时间以使其他线程有机会插入或移除元素。由于 LinkedTransferQueue 是无界的,这个方法通常不会因为队列满而阻塞,除非内存不足,然而,它仍然会等待指定的时间,这可能不是最有效的方法来添加元素到队列中。
  6. put(E e)
    • 将指定的元素插入到队列中,等待必要的空间变得可用,对于 LinkedTransferQueue,由于它是无界的,这个方法实际上永远不会阻塞。
  7. take()
    • 检索并移除队列的头部元素,等待必要的元素变得可用,如果队列为空,则该方法会阻塞,直到有元素可用。
  8. poll()
    • 检索并移除队列的头部元素,或返回 null 如果队列为空,这个方法不会阻塞。
  9. poll(long timeout, TimeUnit unit)
    • 检索并移除队列的头部元素,等待指定的时间以使元素可用,如果在指定的时间内队列仍然为空,则该方法返回 null
  10. peek()
    • 检索但不移除队列的头部元素,或返回 null 如果队列为空。
  11. size()
    • 返回队列中的元素数量,由于队列的并发性质,这个值可能立即过时。它主要用于监控,而不是用于同步控制。
  12. isEmpty()
    • 如果队列为空,则返回 true,否则返回 false,和 size() 方法一样,由于并发性,这个方法的结果可能立即过时。
  13. clear()
    • 移除队列中的所有元素,这个方法不是线程安全的,通常不建议在并发环境中使用。
  14. remainingCapacity()
    • 对于 LinkedTransferQueue,由于它是无界的,这个方法总是返回 Integer.MAX_VALUE,表示队列的剩余容量非常大。
  15. drainTo(Collection<? super E> c)
    • 移除队列中的所有元素,并将它们添加到指定的集合中。
  16. drainTo(Collection<? super E> c, int maxElements)
    • 移除队列中的最多 maxElements 个元素,并将它们添加到指定的集合中。

核心总结

Java并发基础:LinkedTransferQueue全面解析! - 程序员古德

LinkedTransferQueue 是一个高效且线程安全的队列,它实现了 TransferQueue 接口,提供了在生产者和消费者之间直接传递元素的能力,优点在于,它能够在没有消费者时,使生产者线程等待,直到有消费者准备接收元素,从而实现更精细的线程间协作,此外,由于其基于链表的实现,它在高并发环境下表现良好,且不存在队列满的情况(除非内存耗尽)。

LinkedTransferQueue 的缺点在于,相比基于数组的有界队列,它可能会消耗更多的内存,特别是在元素大小较大或队列中元素数量非常多的情况下,此外,虽然它提供了丰富的操作,但在某些简单场景下可能过于复杂。

关注我,每天学习互联网编程技术 - 程序员古德

END!

往期回顾

Java并发基础:LinkedTransferQueue全面解析!

Java并发基础:BlockingQueue和BlockingDeque接口的区别?

Java并发基础:Deque接口和Queue接口的区别?

Spring核心基础:全面总结Spring中提供的那些基础工具类!

Java并发基础:FutureTask全面解析!

相关文章
|
7天前
|
Java
Java中ReentrantLock释放锁代码解析
Java中ReentrantLock释放锁代码解析
24 8
|
1天前
|
存储 缓存 安全
Java并发基础之互斥同步、非阻塞同步、指令重排与volatile
在Java中,多线程编程常常涉及到共享数据的访问,这时候就需要考虑线程安全问题。Java提供了多种机制来实现线程安全,其中包括互斥同步(Mutex Synchronization)、非阻塞同步(Non-blocking Synchronization)、以及volatile关键字等。 互斥同步(Mutex Synchronization) 互斥同步是一种基本的同步手段,它要求在任何时刻,只有一个线程可以执行某个方法或某个代码块,其他线程必须等待。Java中的synchronized关键字就是实现互斥同步的常用手段。当一个线程进入一个synchronized方法或代码块时,它需要先获得锁,如果
14 0
|
5天前
|
Java
Java 15 神秘登场:隐藏类解析未知领域
Java 15 神秘登场:隐藏类解析未知领域
10 0
|
5天前
|
安全 Java 编译器
接口之美,内部之妙:深入解析Java的接口与内部类
接口之美,内部之妙:深入解析Java的接口与内部类
25 0
接口之美,内部之妙:深入解析Java的接口与内部类
|
23天前
|
算法 安全 Java
Java中的并发编程:理解并发性能优化
在当今软件开发领域,多核处理器的普及使得并发编程变得更加重要。本文将深入探讨Java中的并发编程,介绍并发性能优化的关键技术,帮助开发人员更好地利用多核处理器提升应用程序性能。
|
23天前
|
Java 程序员 C#
静态构造方法解析,Java新手必看技能
静态构造方法解析,Java新手必看技能
8 0
|
8天前
|
存储 Java 数据库连接
java多线程之线程通信
java多线程之线程通信
|
9天前
|
安全 Java 开发者
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第9天】本文将深入探讨Java并发编程的核心概念,包括线程安全和性能优化。我们将详细解析Java中的同步机制,包括synchronized关键字、Lock接口以及并发集合等,并探讨它们如何影响程序的性能。此外,我们还将讨论Java内存模型,以及它如何影响并发程序的行为。最后,我们将提供一些实用的并发编程技巧和最佳实践,帮助开发者编写出既线程安全又高效的Java程序。
22 3
|
10天前
|
Java
Java 并发编程:深入理解线程池
【4月更文挑战第8天】本文将深入探讨 Java 中的线程池技术,包括其工作原理、优势以及如何使用。线程池是 Java 并发编程的重要工具,它可以有效地管理和控制线程的执行,提高系统性能。通过本文的学习,读者将对线程池有更深入的理解,并能在实际开发中灵活运用。
|
8天前
|
算法 Java 开发者
Java中的多线程编程:概念、实现与性能优化
【4月更文挑战第9天】在Java编程中,多线程是一种强大的工具,它允许开发者创建并发执行的程序,提高系统的响应性和吞吐量。本文将深入探讨Java多线程的核心概念,包括线程的生命周期、线程同步机制以及线程池的使用。接着,我们将展示如何通过继承Thread类和实现Runnable接口来创建线程,并讨论各自的优缺点。此外,文章还将介绍高级主题,如死锁的预防、避免和检测,以及如何使用并发集合和原子变量来提高多线程程序的性能和安全性。最后,我们将提供一些实用的性能优化技巧,帮助开发者编写出更高效、更稳定的多线程应用程序。

推荐镜像

更多