flink sql问题之连接HBase报错如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。本合集提供有关Apache Flink相关技术、使用技巧和最佳实践的资源。

问题一:flink 1.11 sql作业提交JM报错


我使用flink 1.11提交sql作业,从JM日志中看到有如下异常。我的作业里会通过tEnv.executeSQL执行多个ddl语句,通过tEnv.createStatementSet add多个dml语句,并执行execute。 如下异常可能原因是啥呢?还有个问题,这个异常虽然抛出来了,但是作业还是正常启动执行了。这又是为何?是不是不推荐在作业里同时使用executeSQL和statementset.execute?

Caused by: org.apache.flink.util.FlinkRuntimeException: Cannot have more than one execute() or executeAsync() call in a single environment. at org.apache.flink.client.program.StreamContextEnvironment.validateAllowedExecution(StreamContextEnvironment.java:139) ~[flink-dist_2.12-1.11.0.jar:1.11.0] at org.apache.flink.client.program.StreamContextEnvironment.executeAsync(StreamContextEnvironment.java:127) ~[flink-dist_2.12-1.11.0.jar:1.11.0] at org.apache.flink.table.planner.delegation.ExecutorBase.executeAsync(ExecutorBase.java:57) ~[flink-table-blink_2.12-1.11.0.jar:1.11.0] at org.apache.flink.table.api.internal.TableEnvironmentImpl.executeInternal(TableEnvironmentImpl.java:699) ~[flink-table_2.12-1.11.0.jar:1.11.0] ... 24 more


参考回答:

1.11 对 StreamTableEnvironment.execute()

和 StreamExecutionEnvironment.execute() 的执行方式有所调整,

简单概述为:

  1. StreamTableEnvironment.execute() 只能执行 sqlUpdate 和 insertInto 方法执行作业;
  2. Table 转化为 DataStream 后只能通过 StreamExecutionEnvironment.execute() 来执行作业;
  3. 新引入的 TableEnvironment.executeSql() 和 StatementSet.execute() 方法是直接执行sql作业

(异步提交作业),不需要再调用 StreamTableEnvironment.execute()

或 StreamExecutionEnvironment.execute()

详细可以参考 [1] [2]

对于 “No operators defined in streaming topology.”,如果使用

TableEnvironment.executeSql() 或者 StatementSet.execute() 方法提交的作业后再调用

StreamTableEnvironment.execute() 或 StreamExecutionEnvironment.execute()

提交作业,就会出现前面的错误。

对于

“是不是不推荐在作业里同时使用executeSQL和StatementSet.execute?”,这个答案是no。executeSql和StatementSet不会相互干扰。对于出现的错误,能给一个更详细的提交作业的流程描述吗?

[1]

https://ci.apache.org/projects/flink/flink-docs-release-1.11/zh/dev/table/common.html#%E7%BF%BB%E8%AF%91%E4%B8%8E%E6%89%A7%E8%A1%8C%E6%9F%A5%E8%AF%A2

[2]

https://ci.apache.org/projects/flink/flink-docs-release-1.11/zh/dev/table/common.html#%E5%B0%86%E8%A1%A8%E8%BD%AC%E6%8D%A2%E6%88%90-datastream-%E6%88%96-dataset


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/372274


问题二:flink 1.11 local execution oom问题


我在使用1.11版本在本地idea起一个作业时,并发为1,抛出了如下关于内存的异常。。问题是之前从来没有显示配置过taskmanager的memory参数,这是为何? 感觉由1.10升级到1.11问题还是挺多的。。我尝试增加了JVM参数,增加DirectMemory内存配置,还是没有作用,请教大神帮忙看下。

Exception in thread "main" java.lang.OutOfMemoryError: Could not allocate enough memory segments for NetworkBufferPool (required (Mb): 64, allocated (Mb): 63, missing (Mb): 1). Cause: Direct buffer memory. The direct out-of-memory error has occurred. This can mean two things: either job(s) require(s) a larger size of JVM direct memory or there is a direct memory leak. The direct memory can be allocated by user code or some of its dependencies. In this case 'taskmanager.memory.task.off-heap.size' configuration option should be increased. Flink framework and its dependencies also consume the direct memory, mostly for network communication. The most of network memory is managed by Flink and should not result in out-of-memory error. In certain special cases, in particular for jobs with high parallelism, the framework may require more direct memory which is not managed by Flink. In this case 'taskmanager.memory.framework.off-heap.size' configuration option should be increased. If the error persists then there is probably a direct memory leak in user code or some of its dependencies which has to be investigated and fixed. The task executor has to be shutdown...


参考回答:

这个问题可以看下是否和 releasenote[1] 中 memory configuration

相关的修改有关,具体到这个错误,你可以按照提示增加一些内存看看

[1]

https://flink.apache.org/news/2020/07/06/release-1.11.0.html#other-improvements


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/372276


问题三:flink1.10.1 flink sql消费kafka当parallelism大于1时不产生wat


本人使用的flink版本为flink 1.10.1, flink sql消费kafka, 当parallelism为1时正常运行,但讲parallelism修改为2时,在yarn-session web页面看不到watermark的指标信息了,也没有计算结果输出,sql如下:

insert into

x.report.bi_report_fence_common_indicators

select

fence_id,

'finishedOrderCnt' as indicator_name,

TUMBLE_END(dt, INTERVAL '5' MINUTE) as ts,

count(1) as indicator_val

from

(

select

dt,

fence_id,

fence_coordinates_array,

c.driver_location

from

(

select

*

from

(

select

dt,

driver_location,

r1.f1.fence_info as fence_info

from

(

select

o.dt,

o.driver_location,

MD5(r.city_code) as k,

PROCTIME() as proctime

from

(

select

order_no,

dt,

driver_location,

PROCTIME() as proctime

from

x.ods.ods_binlog_saic_trip_order2_t_order_trans_inner

where

_type = 'insert'

and event_code = 'arriveAndSettlement'

) o

LEFT JOIN x.dim.saic_trip_create_t_order FOR SYSTEM_TIME AS OF o.proctime AS r ON r.order_no = o.order_no

) o1

LEFT JOIN x.dim.fence_info FOR SYSTEM_TIME AS OF o1.proctime AS r1 ON r1.k = o1.k

) a

where

fence_info is not null

) c

LEFT JOIN LATERAL TABLE(fence_split(c.fence_info)) as T(fence_id, fence_coordinates_array) ON TRUE

) as b

where

in_fence(fence_coordinates_array, driver_location)

group by

TUMBLE(dt, INTERVAL '5' MINUTE),

fence_id;

其中 x.ods.ods_binlog_saic_trip_order2_t_order_trans_inner表中dt为watermark字段,建表语句如下:

CREATE TABLE x.ods.ods_binlog_saic_trip_order2_t_order_trans_inner(

_type STRING,

_old_id BIGINT,

id BIGINT,

_old_order_no STRING,

order_no STRING,

_old_event_code STRING,

event_code STRING,

_old_from_state TINYINT,

from_state TINYINT,

_old_to_state TINYINT,

to_state TINYINT,

_old_operator_type TINYINT,

operator_type TINYINT,

_old_passenger_location STRING,

passenger_location STRING,

_old_driver_location STRING,

driver_location STRING,

_old_trans_time STRING,

trans_time STRING,

_old_create_time STRING,

create_time STRING,

_old_update_time STRING,

update_time STRING,

_old_passenger_poi_address STRING,

passenger_poi_address STRING,

_old_passenger_detail_address STRING,

passenger_detail_address STRING,

_old_driver_poi_address STRING,

driver_poi_address STRING,

_old_driver_detail_address STRING,

driver_detail_address STRING,

_old_operator STRING,

operator STRING,

_old_partition_index TINYINT,

partition_index TINYINT,

dt as TO_TIMESTAMP(trans_time),

WATERMARK FOR dt AS dt - INTERVAL '5' SECOND

) WITH (

'connector.type' = 'kafka',

'connector.properties.bootstrap.servers' = '*',

'connector.properties.zookeeper.connect' = '*',

'connector.version' = 'universal',

'format.type' = 'json',

'connector.properties.group.id' = 'testGroup',

'connector.startup-mode' = 'group-offsets',

'connector.topic' = 'xxxxx'

)


参考回答:

可以先看下 Kakfa topic 对应的partition有几个?是否每个分区都有数据。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/372278


问题四:flink sql连接HBase报错


在使用如下语句创建Flink SQL任务,执行查询报错,我想问下,是我遗漏了什么配置项导致flink在“/hbase” node去取元数据,实际集群的hbase配置是在zk的“/hbase-unsecure” node下的

Flink 版本是1.10,hbase的t1表有数据

create table t1 ( rowkey string, f1 ROW ) WITH ( 'connector.type' = 'hbase', 'connector.version' = '1.4.3', 'connector.table-name' = 't1', 'connector.zookeeper.quorum' = '10.101.236.2:2181,10.101.236.3:2181,10.101.236.4:2181', 'connector.zookeeper.znode.parent' = '/hbase-unsecure', 'connector.write.buffer-flush.max-size' = '10mb', 'connector.write.buffer-flush.max-rows' = '1', 'connector.write.buffer-flush.interval' = '2s' );


参考回答:

这应该是碰到了Hbase connector的bug [1], 用户配置的hbaseconf 相关的参数,如connector.zookeeper.quorum 不会生效,这个 bug 在1.11.0 已经修复,可以升级下版本。 在1.10.0版本上一种 walkwaround 的方式是把把这些参数放在 hbase-site.xml 的配置文件中,然后将把配置文件添加到 HADOOP_CLASSPATH中,这样Flink程序也可以加载到正确的配置。

[1] https://issues.apache.org/jira/browse/FLINK-17968 https://issues.apache.org/jira/browse/FLINK-17968


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/372243


问题五:作业从flink1.9.0迁移到1.10.1


LogicalTypeRoot变更后无法从CP恢复:No enum constant org.apache.flink.table.types.logical.LogicalTypeRoot.ANY 各位好:    当我把作业从flink1.9.0迁移到1.10.1,且作业中使用了'group by'形式的语法时,会导致无法从cp/sp恢复,

代码:

报错如下:

switched from RUNNING to FAILED.switched from RUNNING to FAILED.java.lang.Exception: Exception while creating StreamOperatorStateContext. at org.apache.flink.streaming.api.operators.StreamTaskStateInitializerImpl.streamOperatorStateContext(StreamTaskStateInitializerImpl.java:191) at org.apache.flink.streaming.api.operators.AbstractStreamOperator.initializeState(AbstractStreamOperator.java:255) at org.apache.flink.streaming.runtime.tasks.StreamTask.initializeStateAndOpen(StreamTask.java:989) at org.apache.flink.streaming.runtime.tasks.StreamTask.lambda$beforeInvoke$0(StreamTask.java:453) at org.apache.flink.streaming.runtime.tasks.StreamTaskActionExecutor$SynchronizedStreamTaskActionExecutor.runThrowing(StreamTaskActionExecutor.java:94) at org.apache.flink.streaming.runtime.tasks.StreamTask.beforeInvoke(StreamTask.java:448) at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:460) at org.apache.flink.runtime.taskmanager.Task.doRun(Task.java:708) at org.apache.flink.runtime.taskmanager.Task.run(Task.java:533) at java.lang.Thread.run(Thread.java:748)Caused by: org.apache.flink.util.FlinkException: Could not restore keyed state backend for KeyedProcessOperator_d26553d858836b90d15e66f459fbcb50_(2/3) from any of the 1 provided restore options. at org.apache.flink.streaming.api.operators.BackendRestorerProcedure.createAndRestore(BackendRestorerProcedure.java:135) at org.apache.flink.streaming.api.operators.StreamTaskStateInitializerImpl.keyedStatedBackend(StreamTaskStateInitializerImpl.java:304) at org.apache.flink.streaming.api.operators.StreamTaskStateInitializerImpl.streamOperatorStateContext(StreamTaskStateInitializerImpl.java:131) ... 9 moreCaused by: org.apache.flink.runtime.state.BackendBuildingException: Failed when trying to restore heap backend at org.apache.flink.runtime.state.heap.HeapKeyedStateBackendBuilder.build(HeapKeyedStateBackendBuilder.java:116) at org.apache.flink.runtime.state.filesystem.FsStateBackend.createKeyedStateBackend(FsStateBackend.java:529) at org.apache.flink.streaming.api.operators.StreamTaskStateInitializerImpl.lambda$keyedStatedBackend$1(StreamTaskStateInitializerImpl.java:288) at org.apache.flink.streaming.api.operators.BackendRestorerProcedure.attemptCreateAndRestore(BackendRestorerProcedure.java:142) at org.apache.flink.streaming.api.operators.BackendRestorerProcedure.createAndRestore(BackendRestorerProcedure.java:121) ... 11 moreCaused by: java.io.InvalidObjectException: enum constant ANY does not exist in class org.apache.flink.table.types.logical.LogicalTypeRoot at java.io.ObjectInputStream.readEnum(ObjectInputStream.java:2013) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1569) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2286) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:2166) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2068) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1572) at java.io.ObjectInputStream.readObject(ObjectInputStream.java:430) at org.apache.flink.util.InstantiationUtil.deserializeObject(InstantiationUtil.java:576) at org.apache.flink.util.InstantiationUtil.deserializeObject(InstantiationUtil.java:555) at org.apache.flink.table.runtime.typeutils.BaseRowSerializer$BaseRowSerializerSnapshot.readSnapshot(BaseRowSerializer.java:306) at org.apache.flink.api.common.typeutils.TypeSerializerSnapshot.readVersionedSnapshot(TypeSerializerSnapshot.java:174) at org.apache.flink.api.common.typeutils.TypeSerializerSnapshotSerializationUtil$TypeSerializerSnapshotSerializationProxy.deserializeV2(TypeSerializerSnapshotSerializationUtil.java:179) at org.apache.flink.api.common.typeutils.TypeSerializerSnapshotSerializationUtil$TypeSerializerSnapshotSerializationProxy.read(TypeSerializerSnapshotSerializationUtil.java:150) at org.apache.flink.api.common.typeutils.TypeSerializerSnapshotSerializationUtil.readSerializerSnapshot(TypeSerializerSnapshotSerializationUtil.java:76) at org.apache.flink.runtime.state.metainfo.StateMetaInfoSnapshotReadersWriters$CurrentReaderImpl.readStateMetaInfoSnapshot(StateMetaInfoSnapshotReadersWriters.java:219) at org.apache.flink.runtime.state.KeyedBackendSerializationProxy.read(KeyedBackendSerializationProxy.java:169) at org.apache.flink.runtime.state.heap.HeapRestoreOperation.restore(HeapRestoreOperation.java:133) at org.apache.flink.runtime.state.heap.HeapKeyedStateBackendBuilder.build(HeapKeyedStateBackendBuilder.java:114) ... 15 moreCaused by: java.lang.IllegalArgumentException: No enum constant org.apache.flink.table.types.logical.LogicalTypeRoot.ANY at java.lang.Enum.valueOf(Enum.java:238)


参考回答:

问一下,你是指用1.10去恢复 1.9 作业的 savepoint/checkpoint 吗?还是指迁移到 1.10 后,无法从 failover 中恢复? 如果是前者的话,Flink SQL 目前没有保证跨大版本的 state 兼容性。所以当你从 1.9 升级到 1.10 时,作业需要放弃状态重跑。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/372241

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
3月前
|
SQL 开发框架 .NET
ASP.NET连接SQL数据库:详细步骤与最佳实践指南ali01n.xinmi1009fan.com
随着Web开发技术的不断进步,ASP.NET已成为一种非常流行的Web应用程序开发框架。在ASP.NET项目中,我们经常需要与数据库进行交互,特别是SQL数据库。本文将详细介绍如何在ASP.NET项目中连接SQL数据库,并提供最佳实践指南以确保开发过程的稳定性和效率。一、准备工作在开始之前,请确保您
329 3
|
3月前
|
SQL 数据库 索引
SQL语句实现投影连接:方法与技巧详解
在SQL数据库查询中,投影和连接是两个核心概念
|
3月前
|
SQL Java 数据库连接
如何使用`DriverManager.getConnection()`连接数据库,并利用`PreparedStatement`执行参数化查询,有效防止SQL注入。
【10月更文挑战第6天】在代码与逻辑交织的世界中,我从一名数据库新手出发,通过不断探索与实践,最终成为熟练掌握JDBC的开发者。这段旅程充满挑战与惊喜,从建立数据库连接到执行SQL语句,再到理解事务管理和批处理等高级功能,每一步都让我对JDBC有了更深的认识。示例代码展示了如何使用`DriverManager.getConnection()`连接数据库,并利用`PreparedStatement`执行参数化查询,有效防止SQL注入。
156 5
|
3月前
|
SQL 数据库 决策智能
SQL语句实现投影连接详解
在SQL中,投影(Projection)和连接(Join)是数据查询和处理中非常重要的两个操作
|
3月前
|
SQL 存储 数据可视化
SQL 数据库大揭秘:连接数字世界的魔法桥梁
在数字化时代,数据如繁星般璀璨,而 SQL 数据库则像强大的引力场,有序汇聚、整理和分析这些数据。SQL 数据库是一个巨大的数字宝库,装满各行各业的“宝藏”。本文将带你探索 SQL 数据库在电商、金融、医疗和教育等领域的应用。例如,在电商中,它能精准推荐商品;在金融中,它是安全卫士,防范欺诈;在医疗中,它是健康管家,管理病历;在教育中,则是智慧导师,个性化教学。此外,还将介绍如何利用板栗看板等工具实现数据可视化,提升决策效率。
|
3月前
|
SQL 数据库 索引
SQL语句实现投影连接:技巧与方法详解
在SQL数据库操作中,投影连接(Projection Join)是一种常见的数据查询技术,它结合了投影(Projection)和连接(Join)两种操作
|
3月前
|
SQL 存储 监控
串口调试助手连接SQL数据库的技巧与方法
串口调试助手是电子工程师和软件开发人员常用的工具,它能够帮助用户进行串口通信的调试和数据分析
|
3月前
|
SQL 数据库 索引
内连接(INNER JOIN)在SQL中的简单应用与技巧
在SQL查询中,内连接(INNER JOIN)是一种基本且常用的连接类型,用于从两个或多个表中检索匹配的记录
|
3月前
|
SQL 开发框架 .NET
ASP.NET连接SQL数据库:实现过程与关键细节解析an3.021-6232.com
随着互联网技术的快速发展,ASP.NET作为一种广泛使用的服务器端开发技术,其与数据库的交互操作成为了应用开发中的重要环节。本文将详细介绍在ASP.NET中如何连接SQL数据库,包括连接的基本概念、实现步骤、关键代码示例以及常见问题的解决方案。由于篇幅限制,本文不能保证达到完整的2000字,但会确保
|
3月前
|
消息中间件 资源调度 大数据
大数据-112 Flink DataStreamAPI 程序输入源 DataSource 基于文件、集合、Kafka连接器
大数据-112 Flink DataStreamAPI 程序输入源 DataSource 基于文件、集合、Kafka连接器
67 0

相关产品

  • 实时计算 Flink版