Flink报错问题之cdc任务报错如何解决

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。本合集提供有关Apache Flink相关技术、使用技巧和最佳实践的资源。

问题一:flink 1.11 cdc相关问题

小白通过debezium将pgsql cdc数据同步至kafka之后,使用我们flink的sql client提交测试任务,但当kafka端cdc json数据一开始发送,任务即报错,通过web ui log查看界面发现错误日志如下,还请大佬帮忙分析,谢谢!CREATE TABLE pgsql_person_cdc(

id BIGINT,

name STRING,

age STRING,

sex STRING,

phone STRING

) WITH (

'connector' = 'kafka',

'topic' = 'postgres.public.person',

'properties.bootstrap.servers' = 'localhost:9092',

'properties.group.id' = 'pgsql_cdc',

'format' = 'debezium-json',

'debezium-json.schema-include' = 'true'

)

CREATE TABLE sql_out (

id BIGINT,

name STRING,

age STRING,

sex STRING,

phone STRING

) WITH (

'connector' = 'print'

)

INSERT INTO sql_out SELECT * FROM pgsql_person_cdc;

====================================分割线======================================

错误日志:

java.io.IOException: Corrupt Debezium JSON message '{"schema":{"type":"struct","fields":[{"type":"struct","fields":[{"type":"int32","optional":false,"field":"id"},{"type":"string","optional":true,"field":"name"},{"type":"string","optional":true,"field":"age"},{"type":"string","optional":true,"field":"sex"},{"type":"string","optional":true,"field":"phone"}],"optional":true,"name":"postgres.public.person.Value","field":"before"},{"type":"struct","fields":[{"type":"int32","optional":false,"field":"id"},{"type":"string","optional":true,"field":"name"},{"type":"string","optional":true,"field":"age"},{"type":"string","optional":true,"field":"sex"},{"type":"string","optional":true,"field":"phone"}],"optional":true,"name":"postgres.public.person.Value","field":"after"},{"type":"struct","fields":[{"type":"string","optional":false,"field":"version"},{"type":"string","optional":false,"field":"connector"},{"type":"string","optional":false,"field":"name"},{"type":"int64","optional":false,"field":"ts_ms"},{"type":"string","optional":true,"name":"io.debezium.data.Enum","version":1,"parameters":{"allowed":"true,last,false"},"default":"false","field":"snapshot"},{"type":"string","optional":false,"field":"db"},{"type":"string","optional":false,"field":"schema"},{"type":"string","optional":false,"field":"table"},{"type":"int64","optional":true,"field":"txId"},{"type":"int64","optional":true,"field":"lsn"},{"type":"int64","optional":true,"field":"xmin"}],"optional":false,"name":"io.debezium.connector.postgresql.Source","field":"source"},{"type":"string","optional":false,"field":"op"},{"type":"int64","optional":true,"field":"ts_ms"},{"type":"struct","fields":[{"type":"string","optional":false,"field":"id"},{"type":"int64","optional":false,"field":"total_order"},{"type":"int64","optional":false,"field":"data_collection_order"}],"optional":true,"field":"transaction"}],"optional":false,"name":"postgres.public.person.Envelope"},"payload":{"before":null,"after":{"id":2,"name":"liushimin","age":"24","sex":"man","phone":"155555555"},"source":{"version":"1.2.0.Final","connector":"postgresql","name":"postgres","ts_ms":1595409754151,"snapshot":"false","db":"postgres","schema":"public","table":"person","txId":569,"lsn":23632344,"xmin":null},"op":"u","ts_ms":1595409754270,"transaction":null}}'.

at org.apache.flink.formats.json.debezium.DebeziumJsonDeserializationSchema.deserialize(DebeziumJsonDeserializationSchema.java:136) ~[flink-json-1.11.0.jar:1.11.0]

at org.apache.flink.streaming.connectors.kafka.internals.KafkaDeserializationSchemaWrapper.deserialize(KafkaDeserializationSchemaWrapper.java:56) ~[flink-connector-kafka-base_2.11-1.11.0.jar:1.11.0]

at org.apache.flink.streaming.connectors.kafka.internal.KafkaFetcher.partitionConsumerRecordsHandler(KafkaFetcher.java:181) ~[flink-connector-kafka_2.11-1.11.0.jar:1.11.0]

at org.apache.flink.streaming.connectors.kafka.internal.KafkaFetcher.runFetchLoop(KafkaFetcher.java:141) ~[flink-connector-kafka_2.11-1.11.0.jar:1.11.0]

at org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase.run(FlinkKafkaConsumerBase.java:755) ~[flink-connector-kafka-base_2.11-1.11.0.jar:1.11.0]

at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:100) ~[flink-dist_2.11-1.11.0.jar:1.11.0]

at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:63) ~[flink-dist_2.11-1.11.0.jar:1.11.0]

at org.apache.flink.streaming.runtime.tasks.SourceStreamTask$LegacySourceFunctionThread.run(SourceStreamTask.java:201) ~[flink-dist_2.11-1.11.0.jar:1.11.0]

Caused by: java.lang.NullPointerException

at org.apache.flink.formats.json.debezium.DebeziumJsonDeserializationSchema.deserialize(DebeziumJsonDeserializationSchema.java:120) ~[flink-json-1.11.0.jar:1.11.0]

... 7 more

2020-07-22 17:22:34,415 INFO org.apache.flink.runtime.taskmanager.Task [] - Freeing task resources for Source: TableSourceScan(table=[[default_catalog, default_database, pgsql_person_cdc]], fields=[id, name, age, sex, phone]) -> Sink: Sink(table=[default_catalog.default_database.sql_out], fields=[id, name, age, sex, phone]) (1/1) (b553cb66df6e47a27e7dae8466b684ab).

2020-07-22 17:22:34,418 INFO org.apache.flink.runtime.taskexecutor.TaskExecutor [] - Un-registering task and sending final execution state FAILED to JobManager for task Source: TableSourceScan(table=[[default_catalog, default_database, pgsql_person_cdc]], fields=[id, name, age, sex, phone]) -> Sink: Sink(table=[default_catalog.default_database.sql_out], fields=[id, name, age, sex, phone]) (1/1) b553cb66df6e47a27e7dae8466b684ab.

2020-07-22 17:22:34,461 INFO org.apache.flink.runtime.taskexecutor.slot.TaskSlotTableImpl [] - Free slot TaskSlot(index:0, state:ACTIVE, resource profile: ResourceProfile{cpuCores=1.0000000000000000, taskHeapMemory=384.000mb (402653174 bytes), taskOffHeapMemory=0 bytes, managedMemory=512.000mb (536870920 bytes), networkMemory=128.000mb (134217730 bytes)}, allocationId: 495bb5a0cd877808674b29890b6b8bc0, jobId: 3feda3a191fcb8e0da891b9fda1ee532).

2020-07-22 17:22:34,462 INFO org.apache.flink.runtime.taskexecutor.DefaultJobLeaderService [] - Remove job 3feda3a191fcb8e0da891b9fda1ee532 from job leader monitoring.

2020-07-22 17:22:34,462 INFO org.apache.flink.runtime.taskexecutor.TaskExecutor [] - Close JobManager connection for job 3feda3a191fcb8e0da891b9fda1ee532.

====================================分割线======================================*来自志愿者整理的flink邮件归档



参考答案:

代码在为before这条数据设置rowKind时抛了一个NPE,before正常应该是不为null的。 看起来是你的数据问题,一条 update 的changelog, before 为null, 这是不合理的,没有before的数据,是无法处理after的数据的。 如果确认是脏数据,可以开启ignore-parse-errors跳过[1]

祝好 Leonard [1]https://ci.apache.org/projects/flink/flink-docs-master/dev/table/connectors/formats/debezium.html#debezium-json-ignore-parse-errors https://ci.apache.org/projects/flink/flink-docs-master/dev/table/connectors/formats/debezium.html#debezium-json-ignore-parse-errors

{ "payload": { "before": null, "after": { "id": 2, "name": "liushimin", "age": "24", "sex": "man", "phone": "155555555" }, "source": { "version": "1.2.0.Final", "connector": "postgresql", "name": "postgres", "ts_ms": 1595409754151, "snapshot": "false", "db": "postgres", "schema": "public", "table": "person", "txId": 569, "lsn": 23632344, "xmin": null }, "op": "u", "ts_ms": 1595409754270, "transaction": null } }*来自志愿者整理的flink邮件归档



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/371502?spm=a2c6h.12873639.article-detail.27.29d04378ApxdqJ



问题二:flink 1.11 ddl 写mysql的问题

我使用fink 1.11.1 做cdc,发现一秒钟只能写100条左右数据到mysql,请问有优化方案,或者是其他的批量写入的方案建议嘛 代码如下: String sourceDdl =" CREATE TABLE debezium_source " + "( " + "id STRING NOT NULL, name STRING, description STRING, weight Double" + ") " + "WITH (" + " 'connector' = 'kafka-0.11'," + " 'topic' = 'test0717'," + " 'properties.bootstrap.servers' = ' 172.22.20.206:9092', " + "'scan.startup.mode' = 'group-offsets','properties.group.id'='test'," + "'format' = 'debezium-json'," + "'debezium-json.schema-include'='false'," + "'debezium-json.ignore-parse-errors'='true')"; tEnv.executeSql(sourceDdl); System.out.println("init source ddl successful ==>" + sourceDdl); String sinkDdl = " CREATE TABLE sink " + "( " + "id STRING NOT NULL," + " name STRING, " + "description STRING," + " weight Double," + " PRIMARY KEY (id) NOT ENFORCED " + ")" + " WITH " + "( " + "'connector' = 'jdbc', " + "'url' = 'jdbc:mysql://127.0.0.1:3306/test?autoReconnect=true', " + "'table-name' = 'table-out', " + "'driver'= 'com.mysql.cj.jdbc.Driver'," + "'sink.buffer-flush.interval'='1s'," + "'sink.buffer-flush.max-rows'='1000'," + "'username'='DataPip', " + "'password'='DataPip')"; tEnv.executeSql(sinkDdl); System.out.println("init sink ddl successful ==>" + sinkDdl);

String dml = "INSERT INTO sink SELECT id,name ,description, weight FROM debezium_source"; System.out.println("execute dml ==>" + dml); tEnv.executeSql(dml); tEnv.executeSql("CREATE TABLE print_table WITH ('connector' = 'print')" + "LIKE debezium_source (EXCLUDING ALL)"); tEnv.executeSql("INSERT INTO print_table SELECT id,name ,description, weight FROM debezium_source");

*来自志愿者整理的flink邮件归档



参考答案:

你观察到有sink写不过来导致反压吗? 或者你调大flush interval试试,让每个buffer攒更多的数据*来自志愿者整理的flink邮件归档



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/371500?spm=a2c6h.12873639.article-detail.28.29d04378ApxdqJ



问题三:flink row 类型

我这面定义row数据,类型为ROW<rule_key STRING>,可以通过

row.getField(i)获取到对应的值,但是我想获取对应的row_name名称要怎么操作,貌似没有报漏获取名称的接口

rule_key 转换为rule_key1,rulekey2

*来自志愿者整理的flink邮件归档



参考答案:

这个应该是做不到的。name只是SQL plan过程的东西,在运行时它就没有什么实际意义了。

你是想在udf里面获取row里面每个字段的名字是吧?如果是的话,我理解现在应该是做不到的。

*来自志愿者整理的flink邮件归档



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/370331?spm=a2c6h.12873639.article-detail.29.29d04378ApxdqJ



问题四:flink sql 1.11 kafka source with子句使用新参数,下游消费不到数据

根据文档https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/table/connectors/kafka.html#start-reading-position, 使用新参数创建kafka_table,下游消费不到数据,使用老参数下游可以消费到数据,是不是新参数的方式有坑啊

老参数: streamTableEnv.executeSql( """ | |CREATE TABLE kafka_table ( | uid BIGINT, | sex VARCHAR, | age INT, | created_time TIMESTAMP(3), | WATERMARK FOR created_time as created_time - INTERVAL '3' SECOND |) WITH ( | | 'connector.type' = 'kafka', | 'connector.version' = 'universal', | 'connector.topic' = 'user', | 'connector.startup-mode' = 'latest-offset', | 'connector.properties.zookeeper.connect' = 'cdh1:2181,cdh2:2181,cdh3:2181', | 'connector.properties.bootstrap.servers' = 'cdh1:9092,cdh2:9092,cdh3:9092', | 'connector.properties.group.id' = 'user_flink', | 'format.type' = 'json', | 'format.derive-schema' = 'true' | |) |""".stripMargin)

新参数:

streamTableEnv.executeSql( """ | |CREATE TABLE kafka_table ( | | uid BIGINT, | sex VARCHAR, | age INT, | created_time TIMESTAMP(3), | WATERMARK FOR created_time as created_time - INTERVAL '3' SECOND |) WITH ( | 'connector' = 'kafka', | 'topic' = 'user', | 'properties.bootstrap.servers' = 'cdh1:9092,cdh2:9092,cdh3:9092', | 'properties.group.id' = 'user_flink', | 'scan.startup.mode' = 'latest-offset', | 'format' = 'json', | 'json.fail-on-missing-field' = 'false', | 'json.ignore-parse-errors' = 'true' |) |""".stripMargin)

*来自志愿者整理的flink邮件归档



参考答案:

你说的下游消费不到数据,这个下游是指当前作业消费不到数据吗?

正常应该不会的,可以提供个可复现代码吗?

*来自志愿者整理的flink邮件归档



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/370330?spm=a2c6h.12873639.article-detail.30.29d04378ApxdqJ



问题五:flink1.11 tablefunction

我这面在定义一个表函数,通过继承TableFunction完成操作,但是eval方法中的参数类型都是java基本类型(至少看到的demo都是如此),想问一下eval方法中可以传flink

内部类型吗,比如说我想在eval()方法中传递Row类型要怎么操作,eval(Row row)

*来自志愿者整理的flink邮件归档



参考答案:

可以,定义清楚 getResultType 和 getParameterTypes, 可以参考[1]

[1]

https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/table/functions/udfs.html#implementation-guide

*来自志愿者整理的flink邮件归档



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/370327?spm=a2c6h.12873639.article-detail.31.29d04378ApxdqJ

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
2月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
1018 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
5月前
|
数据采集 SQL canal
Amoro + Flink CDC 数据融合入湖新体验
本文总结了货拉拉高级大数据开发工程师陈政羽在Flink Forward Asia 2024上的分享,聚焦Flink CDC在货拉拉的应用与优化。内容涵盖CDC应用现状、数据入湖新体验、入湖优化及未来规划。文中详细分析了CDC在多业务场景中的实践,包括数据采集平台化、稳定性建设,以及面临的文件碎片化、Schema演进等挑战。同时介绍了基于Apache Amoro的湖仓融合架构,通过自优化服务解决小文件问题,提升数据新鲜度与读写平衡。未来将深化Paimon与Amoro的结合,打造更高效的入湖生态与自动化优化方案。
256 1
Amoro + Flink CDC 数据融合入湖新体验
|
5月前
|
SQL 关系型数据库 MySQL
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
Apache Flink CDC 3.4.0 版本正式发布!经过4个月的开发,此版本强化了对高频表结构变更的支持,新增 batch 执行模式和 Apache Iceberg Sink 连接器,可将数据库数据全增量实时写入 Iceberg 数据湖。51位贡献者完成了259次代码提交,优化了 MySQL、MongoDB 等连接器,并修复多个缺陷。未来 3.5 版本将聚焦脏数据处理、数据限流等能力及 AI 生态对接。欢迎下载体验并提出反馈!
879 1
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
|
6月前
|
SQL 运维 Java
蚂蚁 Flink 实时计算编译任务 Koupleless 架构改造
本文介绍了对Flink实时计算编译任务的Koupleless架构改造。为解决进程模型带来的响应慢、资源消耗大等问题,团队将进程模型改为线程模型,并借助Koupleless的类加载隔离能力实现版本和包的隔离。通过动态装配Plugin及其Classpath,以及Biz运行时仅对依赖Plugin可见的设计,大幅优化了编译任务的性能。结果表明,新架构使编译耗时降低50%,吞吐量提升5倍以上。
蚂蚁 Flink 实时计算编译任务 Koupleless 架构改造
|
6月前
|
SQL API Apache
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
705 12
Dinky 和 Flink CDC 在实时整库同步的探索之路
|
4月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
Java 对象存储 流计算
如何迁移 Flink 任务到实时计算
本文由阿里巴巴技术专家景丽宁(砚田)分享,主要介绍如何迁移Flink任务到实时计算 Flink 中来。
如何迁移 Flink 任务到实时计算
|
2月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
375 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。

相关产品

  • 实时计算 Flink版