分布式锁:不同实现方式实践测评

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 Tair(兼容Redis),内存型 2GB
简介: 分布式锁:不同实现方式实践测评

Hello读者朋友们,今天打算分享一篇测评实践类的文章,用优雅的代码与真实的数据来讲述在分布式场景下,不同方式实现的分布式锁,分别探究每一种方式的性能情况与最终的优劣分析。

开门见山,我们先看一张表格,是由Jmeter测试生成的数据结果,现在不必看懂,本篇文章会从业务场景说起,到分布式锁的引入与分析,相信读完全文后大家就可以融会贯通。

1 总体描述与业务实现

说到分布式锁,我们就会想到分布式架构设计的场景,想到分布式架构设计,一般就认定他是为了高并发高负载的业务而起,想到高并发高负载的业务,我们首先可以想到的就是电商平台的秒杀商品场景,没错,通过逆向推导,我们本次的主要业务就是一个电商平台秒杀商品的场景,在此场景下,我们使用分布式锁用来防止商品超卖这个问题,当然此场景下还有诸多需要解决的问题,但是其余我们在此不会涉及。

1.1 场景描述

本次场景就是一个超级简易版的电商秒杀后端系统,大量用户同时购买库存有限的商品,主要流程就是:

用户进行商品购买,商品系统首先查询库存量,足够时则去到数据库进行库存扣减,而后生成通知订单系统生成订单,最终返回给用户,而库存不够时则直接返回用户提示购买失败,不会经过订单系统,所以正常情况下库存量的数量和生成的最大订单量需一致。

因此,我们重点关注的问题就是如何在超大请求量的情况下防止出现超卖现象

库存足够:

库存不足:

1.2 业务代码实现

安装上面的场景描述,我们使用Go语言+MySQL数据库进行简单的实现:

数据访问层代码:

package dao
import (
   "database/sql"
   "fmt"
   _ "github.com/go-sql-driver/mysql"
)
type Book struct {
   Id    int64  `json:"id"`
   Name  string `json:"name"`
   Price int32  `json:"price"`
   Store int64  `json:"store"`
}
type BookDao struct {
   db     *sql.DB
   tbName string
}
func NewBookDao() *BookDao {
   mysqlDB, err := sql.Open("mysql", "root:12345@tcp(127.0.0.1:3306)/test?charset=utf8")
   if err != nil {
      fmt.Errorf("Open mysql connection is err  %s", err)
   }
   return &BookDao{db: mysqlDB, tbName: "book"}
}
func (dao *BookDao) GetBookById(id int64) (Book, error) {
   var book Book
   querySql := fmt.Sprintf("SELECT id,name,price,store FROM %s WHERE id=%d", dao.tbName, id)
   rows, err := dao.db.Query(querySql)
   if err != nil {
      fmt.Errorf("GetBookById Query err %s", err)
      return Book{}, err
   }
   if rows.Next() {
      err = rows.Scan(&book.Id, &book.Name, &book.Price, &book.Store)
      if err != nil {
         fmt.Errorf("GetBookById Scan err %s", err)
         return Book{}, err
      }
   }
   return book, nil
}
func (dao *BookDao) UpdateBookStoreById(book Book) error {
   updateSql := fmt.Sprintf("UPDATE %s SET name=?,price=?,store=? WHERE id=?", dao.tbName)
   stmt, err := dao.db.Prepare(updateSql)
   if err != nil {
      fmt.Errorf("UpdateBookStoreById Prepare err %s", err)
      return err
   }
   _, err = stmt.Exec(book.Name, book.Price, book.Store, book.Id)
   return err
}

业务层代码:

package service
import (
   "fmt"
   "lock_demo/dao"
)
var orderCount int32 //记录订单数量
func BuyBook(userName string, buyNum int64) string {
   bookDao := dao.NewBookDao()
   book, err := bookDao.GetBookById(1)
   if err != nil {
      fmt.Errorf("GetBookById err %s", err)
      return userName + "购买失败"
   }
   if book.Store >= buyNum && book.Store > 0 {
      book.Store = book.Store - buyNum
      err := bookDao.UpdateBookStoreById(book)
      if err != nil {
         fmt.Errorf("UpdateBookStoreById err %s", err)
         return userName + "购买失败"
      }
      orderCount += 1
      fmt.Printf("===%s 购买成功!数量:%d,剩余:%d,订单量:%d ===\n", userName, buyNum, book.Store, orderCount)
      return userName + "购买成功"
   }
   fmt.Printf("===%s 购买失败!数量:%d,剩余:%d,数量不足===\n", userName, buyNum, book.Store)
   return userName + "购买失败"
}

接口层代码:

package main
import (
   "fmt"
   "github.com/spf13/cast"
   "lock_demo/service"
   "net/http"
)
func RunServer() {
   http.HandleFunc("/buyBook", func(w http.ResponseWriter, r *http.Request) {
      username := r.URL.Query().Get("name")
      buyNum := r.URL.Query().Get("num")
      resp := service.BuyBook(username, cast.ToInt64(buyNum))
      _, err := w.Write([]byte(resp))
      if err != nil {
         fmt.Errorf("write err %s", err)
      }
   })
   err := http.ListenAndServe(":8081", nil)
   if err != nil {
      fmt.Errorf("Http run err %s ", err)
   }
}
func main() {
   RunServer()
}

项目需要添加的依赖(包括将要使用的分布式锁的依赖):

github.com/go-redis/redis/v8 v8.11.4
   github.com/go-redsync/redsync/v4 v4.6.0
   github.com/go-sql-driver/mysql v1.6.0
   github.com/go-zookeeper/zk v1.0.3
   github.com/spf13/cast v1.5.0
   go.etcd.io/etcd/client/v3 v3.5.5

数据库:

CREATE TABLE `book`(
   `id` int(11) NOT NULL,
   `name` varchar(255) NOT NULL,
   `price` double NOT NULL,
   `store` int(11) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into book value(1,'Go学习笔记',299,100);
1.3 问题的产生

为了更直观的看到问题所在,我们先不加锁,启动项目,访问地址:

GET http://localhost:8081/buyBook

加上必要的请求参数

GET http://localhost:8081/buyBook?name=BarryYan&num=1

下面我们打开Jmeter工具,新建测试计划,在测试计划中新建线程组和Http请求,我们的参数为20线程循环100次,由上面的SQL语句我们知道,商品的库存只有1000,但是20*100次的请求会有2000的请求量,去抢购1000个商品,正常来讲一定是有1000个用户因为库存不足买不到商品:

接下来我们启动Jmeter,查看运行项目的控制台,如下图:

等Jmeter执行完成后我们看一下MySQL中还有没有库存:

大家可以看到,20*100个请求过后,我们的库存还剩余712,并且订单量也是不正确的,这个问题就是典型的高并发下线程不安全导致的超卖问题。

1.4 分析问题的原因

简述问题的原因,就是在多线程情况下资源被每个线程都获取一份相同的实例,而后在更新库存时每个线程都更新自身操作后的数据,进而每个线程执行过后产生了相同的数据结果,导致了操作多次后数量未发生改变,举个例子:

(1)当前库存900

(2)用户A在D1时间访问数据库看到库存900,用户B在D1时间访问数据库看到库存900

(3)用户A购买1个,库存剩余900-1=899,修改数据库库存为899,用户B也购买1个,库存剩余900-1=899,修改数据库库存为899

(4)此时,数据库剩余库存为899

但是用户A和用户B都获得了订单,库存却只减了1,那么如果D1时间点还有用户C、D、E同时购买呢?结果我们不得而知。

2 分布式锁引入

2.1 分布式锁的概念

先说锁

线程是进程的一个实体,同一进程下的多个线程可以进行资源的共享,多个线程共享一个资源时则会进行资源的竞争进而引发线程异常。

基于此类问题,我们引入锁这个概念,锁,是一种线程中的一种同步机制。通过加锁我们就可以实现对共享资源的互斥访问。

为什么会出现分布式锁?

因为集群环境下,无法避免要把一个项目部署成多个节点,但是数据的一致性导致每个节点访问的数据都是一样的,至此我们可以把每一个项目节点都当做一个线程,整个分布式集群当做一个进程,数据就是多个节点共享的资源,因此难免会引发分布式环境下的多线程问题。

2.2 Redis实现分布式锁
package redis_lock
import (
   "github.com/go-redis/redis/v8"
   "github.com/go-redsync/redsync/v4"
   "github.com/go-redsync/redsync/v4/redis/goredis/v8"
   "time"
)
type RLock struct {
   Mutex *redsync.Mutex
}
func NewRLock(key string, expire ...time.Duration) *RLock {
   client := redis.NewClient(&redis.Options{
      Addr: "localhost:6379",
   })
   pool := goredis.NewPool(client)
   rs := redsync.New(pool)
   option := redsync.WithExpiry(time.Second * 5)
   if len(expire) == 1 {
      option = redsync.WithExpiry(expire[0])
   }
   mutex := rs.NewMutex(key, option)
   return &RLock{Mutex: mutex}
}
func (r *RLock) Lock() error {
   return r.Mutex.Lock()
}
func (r *RLock) Unlock() error {
   if ok, err := r.Mutex.Unlock(); !ok || err != nil {
      return err
   }
   return nil
}
2.3 etcd实现分布式锁
package etcd_lock
import (
   "context"
   "fmt"
   "go.etcd.io/etcd/client/v3"
   "go.etcd.io/etcd/client/v3/concurrency"
   "time"
)
type EtcdLock struct {
   Mutex *concurrency.Mutex
}
func NewEtcdLock(key string, expire ...time.Duration) *EtcdLock {
   timeOut := time.Second * 5
   if len(expire) == 1 {
      timeOut = expire[0]
   }
   cli, err := clientv3.New(clientv3.Config{
      Endpoints:   []string{"127.0.0.1:2379"},
      DialTimeout: time.Second * 5,
   })
   if err != nil {
      fmt.Println(err)
   }
   s1, err := concurrency.NewSession(cli, concurrency.WithTTL(int(timeOut/time.Second)))
   if err != nil {
      fmt.Println(err)
   }
   return &EtcdLock{Mutex: concurrency.NewMutex(s1, key)}
}
func (r *EtcdLock) Lock(ctx context.Context) error {
   return r.Mutex.Lock(ctx)
}
func (r *EtcdLock) Unlock(ctx context.Context) error {
   return r.Mutex.Unlock(ctx)
}
2.4 Zookeeper实现分布式锁
package zk_lock
import (
   "fmt"
   "time"
   "github.com/go-zookeeper/zk"
)
type ZkLock struct {
   ZLock *zk.Lock
}
func NewZkLock(key string, expire ...time.Duration) *ZkLock {
   timeOut := time.Second * 5
   if len(expire) == 1 {
      timeOut = expire[0]
   }
   c, _, err := zk.Connect([]string{"127.0.0.1:2181"}, timeOut)
   if err != nil {
      fmt.Println(err)
   }
   lock := zk.NewLock(c, fmt.Sprintf("/zkLock/lock-%s", key), zk.WorldACL(zk.PermAll))
   return &ZkLock{ZLock: lock}
}
func (z *ZkLock) Lock() error {
   return z.ZLock.Lock()
}
func (z ZkLock) Unlock() error {
   return z.ZLock.Unlock()
}

3 实践测评过程与需要注意的问题

以Zookeeper加锁的代码举例:

func RunServer() {
  http.HandleFunc("/buyBook", func(w http.ResponseWriter, r *http.Request) {
    username := r.URL.Query().Get("name")
    buyNum := r.URL.Query().Get("num")
    zkLock := zk_lock.NewZkLock(username, time.Second*3)
    err := zkLock.Lock()
    if err != nil {
      fmt.Errorf("Lock err = %s",err)
      w.Write([]byte("购买失败"))
      return
    }
    defer func() {
      err = zkLock.Unlock()
      if err != nil {
        fmt.Errorf("UnLock err = %s",err)
      }
    }()
    resp := service.BuyBook(username, cast.ToInt64(buyNum))
    _, err = w.Write([]byte(resp))
    if err != nil {
      fmt.Errorf("write err %s", err)
    }
  })
  err := http.ListenAndServe(":8081", nil)
  if err != nil {
    fmt.Errorf("Http run err %s ", err)
  }
}

实践过程就不是很难了,就是一个加锁和解锁的过程,但是要注意的一些问题:

  • 锁过期时间。分布式锁设置过期时间可以确保在未来的一定时间内,无论获得锁的节点发生了什么问题,最终锁都能被释放掉。但是时间也不能过短,防止业务还没有执行完锁就失效了。
  • 锁的全局唯一标识。
  • 锁的合理释放。我们要考虑在业务执行完成或发生异常时锁也能得到释放。

4 结论

经过Jmeter的分析报告,我们汇总成了一张表格:

依照表格我们可以得出结论:

Redis是三者中吞吐量、平均响应时间最优的一种方式,但是相对而言不如Zookeeper更加稳定,etcd在虽然在各个维度都不如Redis和Zookeeper,但是它仍然是一款比较优秀的云原生领域分布式注册中心,在集群环境中,Redis会产生脑裂、主从同步失败等安全问题,etcd则可以很大程度上屏蔽此类问题,所以我们不能只关注表面的数据,同时也要兼顾每个组件背后的原理和安全性。

最后,做一个小总结,分布式锁是一个相对复杂的组件,除了本文所讲述的以外,如果想要更好的使用分布式锁,还需要考虑其背后的诸多问题,比如锁操作的原子性、一致性、可重入性等,这些当然也与不同组件背后的算法相关,由于篇幅有限就没有一一详解,当然除了etcd、Redis、Zookeeper等组件之外,还有许多方式可以实现分布式锁,比如高性能的关系型数据库、MySQL乐观锁等等,都需要我们针对自身的业务进行选择。其实无论是一般的线程锁,还是分布式锁的作用都是一样的,只是作用的范围大小不同。只是范围越大技术复杂度就越大。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
运维 Kubernetes 调度
阿里云容器服务 ACK One 分布式云容器企业落地实践
3年前的云栖大会,我们发布分布式云容器平台ACK One,随着3年的发展,很高兴看到ACK One在混合云,分布式云领域帮助到越来越多的客户,今天给大家汇报下ACK One 3年来的发展演进,以及如何帮助客户解决分布式领域多云多集群管理的挑战。
阿里云容器服务 ACK One 分布式云容器企业落地实践
|
3月前
|
存储 分布式计算 Hadoop
【揭秘Hadoop背后的秘密!】HDFS读写流程大曝光:从理论到实践,带你深入了解Hadoop分布式文件系统!
【8月更文挑战第24天】Hadoop分布式文件系统(HDFS)是Hadoop生态系统的关键组件,专为大规模数据集提供高效率存储及访问。本文深入解析HDFS数据读写流程并附带示例代码。HDFS采用NameNode和DataNode架构,前者负责元数据管理,后者承担数据块存储任务。文章通过Java示例演示了如何利用Hadoop API实现数据的写入与读取,有助于理解HDFS的工作原理及其在大数据处理中的应用价值。
92 1
|
3月前
|
机器学习/深度学习 人工智能 负载均衡
【AI大模型】分布式训练:深入探索与实践优化
在人工智能的浩瀚宇宙中,AI大模型以其惊人的性能和广泛的应用前景,正引领着技术创新的浪潮。然而,随着模型参数的指数级增长,传统的单机训练方式已难以满足需求。分布式训练作为应对这一挑战的关键技术,正逐渐成为AI研发中的标配。
200 5
|
3月前
|
存储 Kubernetes 监控
深入浅出分布式事务:理论与实践
在数字化时代的浪潮中,分布式系统如同星辰大海般浩瀚而深邃。本文将带你航行于这片星辰大海,探索分布式事务的奥秘。我们将从事务的基本概念出发,逐步深入到分布式事务的核心机制,最后通过一个实战案例,让你亲自体验分布式事务的魅力。让我们一起揭开分布式事务的神秘面纱,领略其背后的科学与艺术。
83 1
|
3月前
|
Go API 数据库
[go 面试] 分布式事务框架选择与实践
[go 面试] 分布式事务框架选择与实践
|
3月前
|
UED 存储 数据管理
深度解析 Uno Platform 离线状态处理技巧:从网络检测到本地存储同步,全方位提升跨平台应用在无网环境下的用户体验与数据管理策略
【8月更文挑战第31天】处理离线状态下的用户体验是现代应用开发的关键。本文通过在线笔记应用案例,介绍如何使用 Uno Platform 优雅地应对离线状态。首先,利用 `NetworkInformation` 类检测网络状态;其次,使用 SQLite 实现离线存储;然后,在网络恢复时同步数据;最后,通过 UI 反馈提升用户体验。
88 0
|
3月前
|
机器学习/深度学习 TensorFlow 数据处理
分布式训练在TensorFlow中的全面应用指南:掌握多机多卡配置与实践技巧,让大规模数据集训练变得轻而易举,大幅提升模型训练效率与性能
【8月更文挑战第31天】本文详细介绍了如何在Tensorflow中实现多机多卡的分布式训练,涵盖环境配置、模型定义、数据处理及训练执行等关键环节。通过具体示例代码,展示了使用`MultiWorkerMirroredStrategy`进行分布式训练的过程,帮助读者更好地应对大规模数据集与复杂模型带来的挑战,提升训练效率。
80 0
|
3月前
|
存储 负载均衡 中间件
构建可扩展的分布式数据库:技术策略与实践
【8月更文挑战第3天】构建可扩展的分布式数据库是一个复杂而具有挑战性的任务。通过采用数据分片、复制与一致性模型、分布式事务管理和负载均衡与自动扩展等关键技术策略,并合理设计节点、架构模式和网络拓扑等关键组件,可以构建出高可用性、高性能和可扩展的分布式数据库系统。然而,在实际应用中还需要注意解决数据一致性、故障恢复与容错性以及分布式事务的复杂性等挑战。随着技术的不断发展和创新,相信分布式数据库系统将在未来发挥更加重要的作用。
|
3月前
|
消息中间件 存储 Kafka
微服务实践之分布式定时任务
微服务实践之分布式定时任务
|
4月前
|
存储 关系型数据库 MySQL
深度评测:PolarDB-X 开源分布式数据库的优势与实践
本文对阿里云开源分布式数据库 PolarDB-X 进行了详细评测。PolarDB-X 以其高性能、强可用性和出色的扩展能力在云原生数据库市场中脱颖而出。文章首先介绍了 PolarDB-X 的核心产品优势,包括金融级高可靠性、海量数据处理能力和高效的混合负载处理能力。随后,分析了其分布式架构设计,包括计算节点、存储节点、元数据服务和日志节点的功能分工。评测还涵盖了在 Windows 平台通过 WSL 环境部署 PolarDB-X 的过程,强调了环境准备和工具安装的关键步骤。使用体验方面,PolarDB-X 在处理分布式事务和实时分析时表现稳定,但在网络问题和性能瓶颈上仍需优化。最后,提出了改进建
7010 2

热门文章

最新文章