GEE机器学习——最大熵分类器案例分析(JavaScript和python代码)

简介: GEE机器学习——最大熵分类器案例分析(JavaScript和python代码)

最大熵分类器

创建最大熵分类器。Maxent 用于使用已知存在位置和大量“背景”位置的环境数据来模拟物种分布概率。有关更多信息和引用,请参阅:https://biodiversityinformatics.amnh.org/open_source/maxent/ 和参考出版物:Phillips 等。al.,2004 年物种分布建模的最大熵方法,第二十一届国际机器学习会议论文集。输出是一个名为“probability”的单个带,包含建模的概率,当“writeClampGrid”参数为 true 时,输出是一个名为“clamp”的附加波段。

在概率论和统计学中,最大熵 (MaxEnt) 是基于系统与其环境处于平衡的假设为系统的事件或状态分配概率分布的原理。MaxEnt 原理可用于在仅给定分布的一组约束的情况下导出给定系统的唯一概率分布。

MaxEnt 原理最早由 Jaynes 于 1957 年提出。Jaynes 认为 MaxEnt 原理是理性无知原理,从某种意义上说,它分配与现有信息最一致的概率分布,但没有做出任何额外的假设系统。

MaxEnt 原理已应用于概率论、统计学和机器学习中的各种问题。例如,MaxEnt 原理可用于导出贝叶斯分析的先验分布,或选择统计模型的参数。

MaxEnt 原理是一个强大的工具,可以对信息不完整的系统进行推断。但需要注意的是,MaxEnt 原理并不是万能的,有时会导致结果不理想。例如,MaxEnt 原理有时会导致分布过于分散,或者不能反映系统中真正的不确定性。

尽管存在这些限制,MaxEnt 原理仍然是对信息不完整的系统进行推断的宝贵工具。它是理性无知的原理,并且可以用于在仅给定分布的一组约束的情况下导出给定系统的唯一概率分布。

通过应用称为最大熵建模的机器学习技术来对物种生态位和分布进行建模。根据一组环境(例如,气候)网格和地理参考发生地点,该模型表达了概率分布,其中每个网格单元具有预测的物种条件适宜性。在有关输入数据和导致出现记录的生物采样工作的特定假设下,输出可以解释为预测的存在概率(cloglog 变换),或预测的局部丰度(原始指数输出)。

最大熵(MaxEnt)是一种概率模型的学习方法,用于处理分类问题。它基于信息学中的熵概念,通过最大化数据集熵的方法找到一个最佳的概率模型,以提高分类的准确性。

在最大熵模型中,特征函数是定义在输入和输出上的函数,用于衡量输入与输出的关联程度。这些特征函数的权重通过最大化熵的方法进行训练,使得模型具有最大的不确定性,同时满足已知的约束条件。最终产生的模型能够最好地拟合已有数据,同时对新的未知数据也有较好的分类能力。

在概率论和统计学中,最大熵 (MaxEnt) 是基于系统与其环境处于平衡的假设为系统的事件或状态分配概率分布的原理。MaxEnt 原理可用于在仅给定分布的一组约束的情况下导出给定系统的唯一概率分布。

MaxEnt 原理最早由 Jaynes 于 1957 年提出。Jaynes 认为 MaxEnt 原理是理性无知原理,从某种意义上说,它分配与现有信息最一致的概率分布,但没有做出任何额外的假设系统。

MaxEnt 原理已应用于概率论、统计学和机器学习中的各种问题。例如,MaxEnt 原理可用于导出贝叶斯分析的先验分布,或选择统计模型的参数。

MaxEnt 原理是一个强大的工具,可以对信息不完整的系统进行推断。但需要注意的是,MaxEnt 原理并不是万能的,有时会导致结果不理想。例如,MaxEnt 原理有时会导致分布过于分散,或者不能反映系统中真正的不确定性。

尽管存在这些限制,MaxEnt 原理仍然是对信息不完整的系统进行推断的宝贵工具。它是理性无知的原理,并且可以用于在仅给定分布的一组约束的情况下导出给定系统的唯一概率分布。

最大熵模型在自然语言处理、图像识别、文本分类、数据挖掘等领域中得到了广泛应用。

函数

ee.Classifier.amnhMaxent(categoricalNames, outputFormat, autoFeature, linear, quadratic, product, threshold, hinge, hingeThreshold, l2lqThreshold, lq2lqptThreshold, addSamplesToBackground, addAllSamplesToBackground, betaMultiplier, betaHinge, betaLqp, betaCategorical, betaThreshold, extrapolate, doClamp, writeClampGrid, randomTestPoints, seed)

相关文章
|
10天前
|
JavaScript 前端开发 Java
通义灵码 Rules 库合集来了,覆盖Java、TypeScript、Python、Go、JavaScript 等
通义灵码新上的外挂 Project Rules 获得了开发者的一致好评:最小成本适配我的开发风格、相当把团队经验沉淀下来,是个很好功能……
321 75
|
6天前
|
存储 JavaScript 前端开发
在NodeJS中使用npm包进行JS代码的混淆加密
总的来说,使用“javascript-obfuscator”包可以帮助我们在Node.js中轻松地混淆JavaScript代码。通过合理的配置,我们可以使混淆后的代码更难以理解,从而提高代码的保密性。
48 9
|
27天前
|
前端开发 JavaScript
【Javascript系列】Terser除了压缩代码之外,还有优化代码的功能
Terser 是一款广泛应用于前端开发的 JavaScript 解析器和压缩工具,常被视为 Uglify-es 的替代品。它不仅能高效压缩代码体积,还能优化代码逻辑,提升可靠性。例如,在调试中发现,Terser 压缩后的代码对删除功能确认框逻辑进行了优化。常用参数包括 `compress`(启用压缩)、`mangle`(变量名混淆)和 `output`(输出配置)。更多高级用法可参考官方文档。
109 11
|
1月前
|
JavaScript 前端开发 算法
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
1月前
|
JavaScript 前端开发 API
JavaScript中通过array.map()实现数据转换、创建派生数组、异步数据流处理、复杂API请求、DOM操作、搜索和过滤等,array.map()的使用详解(附实际应用代码)
array.map()可以用来数据转换、创建派生数组、应用函数、链式调用、异步数据流处理、复杂API请求梳理、提供DOM操作、用来搜索和过滤等,比for好用太多了,主要是写法简单,并且非常直观,并且能提升代码的可读性,也就提升了Long Term代码的可维护性。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
1月前
|
移动开发 运维 供应链
通过array.some()实现权限检查、表单验证、库存管理、内容审查和数据处理;js数组元素检查的方法,some()的使用详解,array.some与array.every的区别(附实际应用代码)
array.some()可以用来权限检查、表单验证、库存管理、内容审查和数据处理等数据校验工作,核心在于利用其短路机制,速度更快,节约性能。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
1月前
|
供应链 JavaScript 前端开发
通过array.every()实现数据验证、权限检查和一致性检查;js数组元素检查的方法,every()的使用详解,array.some与array.every的区别(附实际应用代码)
array.every()可以用来数据验证、权限检查、一致性检查等数据校验工作,核心在于利用其短路机制,速度更快,节约性能。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
1月前
|
数据采集 JavaScript 前端开发
JavaScript中通过array.filter()实现数组的数据筛选、数据清洗和链式调用,JS中数组过滤器的使用详解(附实际应用代码)
用array.filter()来实现数据筛选、数据清洗和链式调用,相对于for循环更加清晰,语义化强,能显著提升代码的可读性和可维护性。博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
20天前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
5月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
319 6

热门文章

最新文章

下一篇
oss创建bucket