GEE数据的白天day/夜晚night LST数据按照QC掩膜后的结果差异明显

简介: GEE数据的白天day/夜晚night LST数据按照QC掩膜后的结果差异明显

MODIS数据集中,我使用相同的函数通过 QC 位掩码屏蔽白天 LST 和夜间 LST。蒙蔽的夜间LST图像的质量显着下降,并且实际上它的空间覆盖率比未蒙蔽的LST夜间图像要低得多。我想知道如何处理这个问题。前言 – 人工智能教程代码如下: https://code.earthengine.google.co.in/197a5e6fe581879db3b121f06415039f

影像合成:mean平均值,min最小值合成的影像:

您能看一下我使用 QC 层屏蔽 MYD11A1 LST 数据的代码吗?

https://code.earthengine.google.com/d882b904956c03029f70b0bf80219297

我使用相同的函数使用 QC 位掩码来屏蔽白天/夜间 LST。遮罩的 LST 白天图像似乎只丢弃了坏像素,但遮罩的 LST 夜间图像看起来也丢弃了优质像素,因此它的空间覆盖范围比未遮罩的 LST 夜间图像要低得多。我怀疑 MYD11A1 数据的 LST 夜间 QC 层可能存在与 MYD12A1 之前在该线程中遇到的类似问题。

谁能解释为什么 QC-Day/Night 带在陆地上屏蔽了像素?如果这是由于云造成的,我认为被云覆盖的像素被标记为 QC 位标志“10:由于云效应而未产生 LST”。

当我使用qualitybits创建蒙版时,蒙版会自动将QC波段的蒙版像素包含在蒙版中,而这些QC波段的蒙版像素的位置在波段“LST_Day(Night)_1km”中具有LST值。那么,屏蔽 QC 频段的这些 LST 值意味着什么——质量差?我不应该使用它们吗?

这是GEE代码: https://code.earthengine.google.com/91dbffc0cf680291abd3ede8264c022c

代码:

var modisLST = ee.ImageCollection("MODIS/061/MOD11A2"),
    modisLST_Aqua = ee.ImageCollection("MODIS/061/MYD11A2");
var startYear = 2017
var endYear = 2021
var startDate = ee.Date.fromYMD(startYear, 1, 1)
var endDate = ee.Date.fromYMD(endYear, 12, 31)
var bitwiseExtract = function(input, fromBit, toBit) {
  var maskSize = ee.Number(1).add(toBit).subtract(fromBit)
  var mask = ee.Number(1).leftShift(maskSize).subtract(1)
  return input.rightShift(fromBit).bitwiseAnd(mask)
}
// Cloud Masking
var applyQaMask_day = function(image) {
  var lstDay = image.select('LST_Day_1km')
  var qcDay = image.select('QC_Day')
  var qaMask = bitwiseExtract(qcDay, 0, 1).lte(1)
  //var dataQualityMask = bitwiseExtract(qcDay, 2, 3).eq(0)
  var dataQualityMask = bitwiseExtract(qcDay, 2, 3).lte(1)
  var EmissivityerrorMask = bitwiseExtract(qcDay, 4, 5).lte(1)
  var lstErrorMask = bitwiseExtract(qcDay, 6, 7).eq(0)
  var mask = qaMask.and(dataQualityMask).and(lstErrorMask).and(EmissivityerrorMask)
  return lstDay.updateMask(mask)
}
var applyQaMask_night = function(image) {
  var lstNight = image.select('LST_Night_1km')
  var qcNight = image.select('QC_Night')
  var qaNightMask = bitwiseExtract(qcNight, 0, 1).lte(1)
  //var dataNightQualityMask = bitwiseExtract(qcNight, 2, 3).eq(0)
  var dataNightQualityMask = bitwiseExtract(qcNight, 2, 3).lte(1)
  var EmissivityNighterrorMask = bitwiseExtract(qcNight, 4, 5).lte(1)
  var lstNightErrorMask = bitwiseExtract(qcNight, 6, 7).eq(0)
  var Nightmask = qaNightMask.and(dataNightQualityMask).and(lstNightErrorMask).and(EmissivityNighterrorMask)
  return lstNight.updateMask(Nightmask)
}
// Apply the function to all images in the collection
var terra_day = modisLST_Aqua
  .filter(ee.Filter.date(startDate, endDate)).select('LST_Day_1km','QC_Day');
var terraMasked_day = terra_day.map(applyQaMask_day)
var terra_night = modisLST_Aqua
  .filter(ee.Filter.date(startDate, endDate)).select('LST_Night_1km','QC_Night');
var terraMasked_night = terra_night.map(applyQaMask_night)
// print(terraMasked_day.first())
// 月合成 Create NDVI composite for every month
var years = ee.List.sequence(startYear,endYear);
var months = ee.List.sequence(1, 12);
// Map over the years and create a monthly average collection
var monthlyImages = years.map(function(year) {
  return months.map(function(month) {
    var filtered = terraMasked_night
      .filter(ee.Filter.calendarRange(year, year, 'year'))
      .filter(ee.Filter.calendarRange(month, month, 'month'))
    var monthly = filtered.mean()
    return monthly.set({'month': month, 'year': year})
  })
}).flatten()
//print(monthlyImages)
// We now have 1 image per month for entire duratioon
var monthlyCol = ee.ImageCollection.fromImages(monthlyImages)
print(monthlyCol,'monthlyCol')
var visParams = {min:13000, max:16000, palette: ['green', 'yellow', 'red']}
Map.addLayer(terra_day.select('LST_Day_1km').first(), visParams, 'Original LSTday Image');
Map.addLayer(terraMasked_day.first(), visParams, 'LSTday Masked');
Map.addLayer(terra_night.select('LST_Night_1km').mean(), visParams, 'Original LSTnight Image');
Map.addLayer(terraMasked_night.mean(), visParams, 'LSTnight Masked');
Map.addLayer(terraMasked_night.min(), visParams, 'LSTnight Masked min');

前言 – 人工智能教程

欢迎持续关注,如果后续有官网的问题的跟进,我会随时在这里更新。

相关文章
|
8月前
|
编解码 人工智能
中科星图——MOD11A1 V6是由Aqua中分辨率成像光谱仪获取的地表温度/发射率(LST/E)数据集
中科星图——MOD11A1 V6是由Aqua中分辨率成像光谱仪获取的地表温度/发射率(LST/E)数据集
87 1
|
编解码 ice
Google Earth Engine——NOAA气候数据记录(CDR)的AVHRR叶面积指数(LAI)和吸收光合有效辐射的部分(FAPAR)数据集包含描述植物冠层和光合活动的衍生值
Google Earth Engine——NOAA气候数据记录(CDR)的AVHRR叶面积指数(LAI)和吸收光合有效辐射的部分(FAPAR)数据集包含描述植物冠层和光合活动的衍生值
603 0
Google Earth Engine——NOAA气候数据记录(CDR)的AVHRR叶面积指数(LAI)和吸收光合有效辐射的部分(FAPAR)数据集包含描述植物冠层和光合活动的衍生值
|
8月前
|
机器学习/深度学习 算法 数据挖掘
Hybrid-SORT起飞 | 超过DeepSORT将近10个点的多目标跟踪香不香?
Hybrid-SORT起飞 | 超过DeepSORT将近10个点的多目标跟踪香不香?
210 0
成信大ENVI_IDL第二周课后作业:提取n个点的气溶胶厚度+详细解析
成信大ENVI_IDL第二周课后作业:提取n个点的气溶胶厚度+详细解析
97 0
|
编解码
中秋节祝福程序源代码分享:土地分类数据阈值筛选和重投影分类
中秋节祝福程序源代码分享:土地分类数据阈值筛选和重投影分类
152 0
中秋节祝福程序源代码分享:土地分类数据阈值筛选和重投影分类
|
人工智能 定位技术 Go
UPC——2020年春混合个人训练第二十五场(FG)
UPC——2020年春混合个人训练第二十五场(FG)
103 0
|
存储 中间件
Axure实战08:创建一个BMI身体质量指数查询网站
Axure实战08:创建一个BMI身体质量指数查询网站
346 0
Axure实战08:创建一个BMI身体质量指数查询网站
|
编解码 区块链
Google Earth Engine——WWF/HydroSHEDS/30ACC该数据集的分辨率为30弧秒。30角秒的数据集是水文条件下的DEM、排水(流)方向和流量累积。
Google Earth Engine——WWF/HydroSHEDS/30ACC该数据集的分辨率为30弧秒。30角秒的数据集是水文条件下的DEM、排水(流)方向和流量累积。
163 0
Google Earth Engine——WWF/HydroSHEDS/30ACC该数据集的分辨率为30弧秒。30角秒的数据集是水文条件下的DEM、排水(流)方向和流量累积。
|
算法 数据处理 数据中心
Google Earth Engine——NOAA气候数据记录(CDR)的气溶胶光学厚度(AOT)是全球每日0.1度的衍生数据的集合,气溶胶产品是由AVHRR图像在白天海洋上空无云条件下生成的。
Google Earth Engine——NOAA气候数据记录(CDR)的气溶胶光学厚度(AOT)是全球每日0.1度的衍生数据的集合,气溶胶产品是由AVHRR图像在白天海洋上空无云条件下生成的。
198 0
Google Earth Engine——NOAA气候数据记录(CDR)的气溶胶光学厚度(AOT)是全球每日0.1度的衍生数据的集合,气溶胶产品是由AVHRR图像在白天海洋上空无云条件下生成的。
|
UED
Google Earth Engine——植被统计数据集中的图像包含用于计算NTT的 “反转校正t统计“,NTT是由MODIS NDVI得出的植被颜色指数,FORMA用来测量褐化。
Google Earth Engine——植被统计数据集中的图像包含用于计算NTT的 “反转校正t统计“,NTT是由MODIS NDVI得出的植被颜色指数,FORMA用来测量褐化。
137 0
Google Earth Engine——植被统计数据集中的图像包含用于计算NTT的 “反转校正t统计“,NTT是由MODIS NDVI得出的植被颜色指数,FORMA用来测量褐化。