Google Earth Engine——NOAA气候数据记录(CDR)的AVHRR叶面积指数(LAI)和吸收光合有效辐射的部分(FAPAR)数据集包含描述植物冠层和光合活动的衍生值

简介: Google Earth Engine——NOAA气候数据记录(CDR)的AVHRR叶面积指数(LAI)和吸收光合有效辐射的部分(FAPAR)数据集包含描述植物冠层和光合活动的衍生值

The NOAA Climate Data Record (CDR) of AVHRR Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) dataset contains derived values that characterize the canopy and photosynthetic activity of plants. This dataset is derived from the NOAA AVHRR Surface Reflectance product and is gridded at a resolution of 0.05° on a daily basis. The values are computed globally over land surfaces, but not over bare or very sparsely vegetated areas, permanent ice or snow, permanent wetland, urban areas, or water bodies.

Known issues with this dataset include:

  • TIMEOFDAY variable contains values that are too large by 1 day
  • Latitude values are not correctly associated with the center of the grid cell, error is < 0.002 degrees
  • Longitude values are not correctly associated with the center of the grid cell, error is < 0.02 degrees

See technical note from the data provider.


NOAA气候数据记录(CDR)的AVHRR叶面积指数(LAI)和吸收光合有效辐射的部分(FAPAR)数据集包含描述植物冠层和光合活动的衍生值。该数据集来自NOAA AVHRR表面反射产品,并以0.05°的分辨率按日进行网格化。这些数值是在全球范围内计算的,但不包括光秃秃的或植被非常稀少的地区、永久的冰或雪、永久的湿地、城市地区或水体。

这个数据集的已知问题包括。

TIMEOFDAY变量所包含的数值过大,超过1天。

纬度值与网格单元的中心没有正确关联,误差<0.002度

经度值与网格单元的中心没有正确关联,误差< 0.02度

见数据提供者的技术说明。

Resolution

5566 meters

Bands Table

Name Description Min* Max* Scale
LAI Leaf area index 0 6205 0.001
FAPAR Fraction of absorbed photosynthetic active radiation 0 896 0.001
QA Quality control bit flags 0
QA Bitmask
  • Bits 0-1: Quality control
    • 0: Ok
    • 1: Input flags as cloudy
    • 2: Invalid input
    • 3: Output out of range
  • Bits 2-4: Associated class
    • 1: Needleleaf forest
    • 2: Broadleaf forest
    • 4: Grassland & croplands & non vegetated
    • 5: Evergreen broadleaf forest
    • 6: Water
  • Bit 5: BRDF corrected
    • 0: No
    • 1: Yes
  • Bits 6-7: Polygon test
    • 0: In polygon
    • 1: Not in polygon
    • 2: Not tested (water/cloudy)


* = Values are estimated

CLOSEIMPORT

影像属性:

Name Type Description
status String 'provisional' or 'permanent'


引用:

The NOAA CDR Program’s official distribution point for CDRs is NOAA’s National Climatic Data Center which provides sustained, open access and active data management of the CDR packages and related information in keeping with the United States’ open data policies and practices as described in the President's Memorandum on "Open Data Policy" and pursuant to the Executive Order of May 9, 2013, "Making Open and Machine Readable the New Default for Government Information". In line with these policies, the CDR data sets are nonproprietary, publicly available, and no restrictions are placed upon their use. For more information, see the Fair Use of NOAA's CDR Data Sets, Algorithms and Documentation pdf.

Martin Claverie, Eric Vermote, and NOAA CDR Program (2014): NOAA Climate Data Record (CDR) of Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Version 4. [indicate subset used]. NOAA National Climatic Data Center. doi:10.7289/V5M043BX

代码:

var dataset = ee.ImageCollection('NOAA/CDR/AVHRR/LAI_FAPAR/V4')
                  .filter(ee.Filter.date('2018-02-01', '2018-03-01'));
var leafAreaIndex = dataset.select('LAI');
var leafAreaIndexVis = {
  min: 0.0,
  max: 4000.0,
  palette: ['3b0200', '977705', 'ca9f06', 'ffca09', '006a03', '003b02'],
};
Map.setCenter(20, 24.5, 2);
Map.addLayer(leafAreaIndex, leafAreaIndexVis, 'Leaf Area Index');

代码:

var dataset = ee.ImageCollection('NOAA/CDR/AVHRR/LAI_FAPAR/V5')
                  .filter(ee.Filter.date('2018-02-01', '2018-03-01'));
var leafAreaIndex = dataset.select('LAI');
var leafAreaIndexVis = {
  min: 0.0,
  max: 4000.0,
  palette: ['3b0200', '977705', 'ca9f06', 'ffca09', '006a03', '003b02'],
};
Map.setCenter(20, 24.5, 2);
Map.addLayer(leafAreaIndex, leafAreaIndexVis, 'Leaf Area Index');

 


相关文章
|
6月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2486 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
224 0
|
6月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
88 0
|
6月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
145 0
|
6月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
77 0
|
6月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
263 0
|
6月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
127 0
|
6月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
124 0
|
6月前
|
编解码 定位技术
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
162 0
|
6月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
568 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中

热门文章

最新文章