Google Earth Engine(GEE)——全球树木异体测量和树冠结构(Tallo)数据库

简介: Google Earth Engine(GEE)——全球树木异体测量和树冠结构(Tallo)数据库

全球树木异体测量和树冠结构(Tallo)数据库

Tallo数据库(V1.0.0)收集了498,838条有地理坐标和分类学标准的单个树木记录,这些树木的干径、高度和/或树冠半径已被测量。数据来自全球61,856个地点,包括5,163个树种的测量。Tallo包括在全球6万多个地点获得的5000多个树种的近50万条地理参考和分类学标准记录,包括所有主要陆地生物群落的数据和一些世界上有记录的最大的树木。数据库中的大多数树木都被鉴定为物种(88%),Tallo总共包括5163个物种的数据,分布在1453个属和187个植物科。该数据库在CC-BY 4.0许可下公开存档。

你可以在这里阅读该论文,并从以下网站下载该数据库Tallo database | Zenodo

参考文献

Jucker, Tommaso, Fabian Jörg Fischer, Jérôme Chave, David A. Coomes, John Caspersen, Arshad Ali, Grace Jopaul Loubota Panzou et al. "Tallo: A global
tree allometry and crown architecture database." Global change biology 28, no. 17 (2022): 5254-5268.

Dataset citation

Jucker, Tommaso, Fischer, Fabian, Chave, Jérôme, Coomes, David, Caspersen, John, Ali, Arshad, Loubota Panzou, Grace Jopaul, Feldpausch, Ted,
Falster, Daniel, Usoltsev, Vladimir, Adu-Bredu, Stephen, Alves, Luciana, Aminpour, Mohammad, Angoboy, Ilondea, Anten, Niels, Antin, Cécile, Askari,
Yousef, Avilés, Rodrigo Muñoz, Ayyappan, Narayanan, … Zavala, Miguel. (2022). Tallo database (1.0.0) [Data set].
Zenodo. https://doi.org/10.5281/zenodo.6637599

Earth Engine Snippet: Distance to Second Class

var tallo = ee.FeatureCollection("projects/sat-io/open-datasets/tallo_database");

Sample code: https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:agriculture-vegetation-forestry/TREE-ALLOMETRY-CROWN-ARCH-DATABASE

License

This work is licensed under Creative Commons Attribution 4.0 International.

Created by: Jucker, Tommaso, et al. 2022

Curated in GEE by : Samapriya Roy

Keywords: stem diameter, tree height, crown size, tree allometry, tree architecture, forest biomass, remote sensing

Last updated on GEE: 2022-10-21

 

相关文章
|
6月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2478 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
222 0
|
6月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
566 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
6月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
111 0
|
9天前
|
SQL 关系型数据库 MySQL
go语言数据库中mysql驱动安装
【11月更文挑战第2天】
23 4
|
7天前
|
SQL 关系型数据库 MySQL
12 PHP配置数据库MySQL
路老师分享了PHP操作MySQL数据库的方法,包括安装并连接MySQL服务器、选择数据库、执行SQL语句(如插入、更新、删除和查询),以及将结果集返回到数组。通过具体示例代码,详细介绍了每一步的操作流程,帮助读者快速入门PHP与MySQL的交互。
22 1
|
1月前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
61 3
Mysql(4)—数据库索引
|
16天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
82 1
|
18天前
|
关系型数据库 MySQL Linux
在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。
本文介绍了在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。同时,文章还对比了编译源码安装与使用 RPM 包安装的优缺点,帮助读者根据需求选择最合适的方法。通过具体案例,展示了编译源码安装的灵活性和定制性。
60 2
|
21天前
|
存储 关系型数据库 MySQL
MySQL vs. PostgreSQL:选择适合你的开源数据库
在众多开源数据库中,MySQL和PostgreSQL无疑是最受欢迎的两个。它们都有着强大的功能、广泛的社区支持和丰富的生态系统。然而,它们在设计理念、性能特点、功能特性等方面存在着显著的差异。本文将从这三个方面对MySQL和PostgreSQL进行比较,以帮助您选择更适合您需求的开源数据库。
84 4

热门文章

最新文章