YOLOv5改进 | 2023 | MPDIoU、InnerMPDIoU助力细节涨点

简介: YOLOv5改进 | 2023 | MPDIoU、InnerMPDIoU助力细节涨点

一、本文介绍

本文为读者详细介绍了YOLOv5模型的最新改进,带来的改进机制是最新的损失函数MPDIoU和融合了最新的Inner思想的InnerMPDIoU(效果打爆之前的所有的损失函数)提升检测精度和处理细节方面的作用。通过深入探讨MPDIoU和InnerMPDIoU(全网首发)的工作原理和实际代码实现,本文旨在指导读者如何将这些先进的损失函数技术应用到YOLOv5模型中,以提高其性能和准确性。文章内容涵盖从理论基础、代码实现,到实际教你如何添加本文的机制到你的模型中

分析下这个结果图片:最左面的是基础版本没做任何修改的,中间的只是修改了MPDIoU可以看到涨点相对于基础版本的大概有0.05个点左右,但是我增加了InnerMPDIoU的效果基本持平(我个人觉得是我的数据集原因)所以大家自己进行实验的时候可以多做一轮进行一下对比。

专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

二、MPDIoU的机制原理

问题提出:文章指出,在目标检测和实例分割的过程中,传统的边界框回归(BBR)损失函数难以优化预测框和真实框在宽高比相同但具体尺寸不同时的情况,下面是描述现有的边界框回归的方法的计算因素总结(包括GIoU、DIoU、CIoU和EIoU)的计算因素。这些度量方法是用于评估和优化边界框回归模型性能的关键工具。虽然文章没有直接展示下图的内容,但它们包括以下几个方面:

  • GIoU(Generalized IoU):除了传统的IoU(交并比)之外,GIoU还考虑了边界框之间的包含关系和空间分布。
  • DIoU(Distance IoU):在IoU的基础上,DIoU还考虑了边界框中心点之间的距离,以改进对齐和尺度不一致的情况。
  • CIoU(Complete IoU):结合了DIoU的特点,并加入了宽高比的考虑,进一步提高了对边界框的精确度。
  • EIoU(Expected IoU):这是一种更高级的度量方法,考虑了预测边界框与真实边界框之间的预期相似度。

文章提出的MPDIoU是在这些现有度量方法的基础上发展起来的,旨在通过直接最小化预测框和真实框之间的关键点距离,提供一种易于实现的解决方案,用于计算两个轴对齐矩形之间的MPDIoU

MPDIoU的提出:为了克服这一挑战,文章提出了一种新的边界框相似度度量方法——MPDIoU(Minimum Point Distance Intersection over Union)。MPDIoU是基于水平矩形的最小点距离来计算的,能够综合考虑重叠区域、中心点距离以及宽度和高度的偏差。

下图展示了两种不同的边界框回归结果情况。其中,绿色框代表真实的边界框而红色框代表预测的边界框。在这两种情况下,传统的损失函数(如GIoU、DIoU、CIoU和EIoU)计算出的损失值是相同的,但是使用MPDIoU方法计算出的损失值却有所不同。这说明传统方法在某些特定情况下可能无法区分不同的预测结果,而MPDIoU能更准确地反映预测框和真实框之间的差异。

这个发现突显了MPDIoU在处理边界框回归问题上的优势,尤其是在区分具有相同宽高比但不同尺寸或位置的边界框时。MPDIoU通过直接计算预测框和真实框之间的关键点距离,提供了更精确的损失度量方法。

LMPDIoU损失函数:基于MPDIoU的概念,文章定义了一种新的损失函数LMPDIoU。LMPDIoU的公式如下:

这一公式表明LMPDIoU损失函数与MPDIoU的相似度成反比关系,即MPDIoU越高,LMPDIoU损失越低,这推动模型预测的边界框更加接近真实框。

公式推理:在下图展示了作者提出的LMPDIoU损失函数的各种因素。

这些因素包括如何在训练阶段通过最小化损失函数来使模型预测的边界框接近其真实边界框。具体来说,每个预测的边界框

通过最小化以下损失函数来逼近其真实边界框:

其中,

是真实边界框的集合,而

是回归深度模型的参数。文章中提出的

损失函数公式为:

实验验证:通过在多个数据集(如PASCAL VOC、MS COCO和IIIT5k)上对YOLACT和YOLOv7等模型的训练和测试,文章验证了MPDIoU和LMPDIoU在实际应用中的有效性。实验结果显示,这种新的损失函数在多个方面优于传统的损失函数,尤其是在处理具有相似宽高比但不同尺寸的边界框时。

下面是一些检测效果对比图

总结来说,文章通过引入MPDIoU和LMPDIoU(我又将其和Inner的思想结合了在一起形成了InnerMPDIoU双重提高了效果),提供了一种新的视角来优化目标检测中的边界框回归问题,同时通过实验验证了其在提高检测模型准确性方面的有效性。

目录
相关文章
|
机器学习/深度学习 算法 计算机视觉
YOLOv5改进 | 损失函数篇 | 最新ShapeIoU、InnerShapeIoU损失助力细节涨点
YOLOv5改进 | 损失函数篇 | 最新ShapeIoU、InnerShapeIoU损失助力细节涨点
757 1
|
机器学习/深度学习 人工智能 自然语言处理
一文搞懂【知识蒸馏】【Knowledge Distillation】算法原理
一文搞懂【知识蒸馏】【Knowledge Distillation】算法原理
一文搞懂【知识蒸馏】【Knowledge Distillation】算法原理
|
Web App开发 前端开发 数据库
推荐GitHub上开源的一款独立开发者出海技术栈和工具合集
推荐GitHub上开源的一款独立开发者出海技术栈和工具合集
700 0
|
SQL 数据库
商城数据库表设计介绍
商城数据库表设计介绍
2184 0
商城数据库表设计介绍
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在文本生成中的应用
【8月更文挑战第26天】本文将探讨人工智能(AI)在文本生成领域的应用。我们将介绍AI如何通过自然语言处理(NLP)和机器学习(ML)技术,实现自动生成高质量文本内容的能力。文章将详细解释AI文本生成的基本原理,包括预训练模型、神经网络架构以及训练和优化过程。我们还将讨论AI文本生成技术的局限性和未来发展方向,并提供一些实际的应用案例。
|
人工智能
YOLOv11改进策略【损失函数篇】| 2024 引进Focaler-IoU损失函数 加强边界框回归 (Focaler-DIoU、Focaler-GIoU、Focaler-CIoU)
YOLOv11改进策略【损失函数篇】| 2024 引进Focaler-IoU损失函数 加强边界框回归 (Focaler-DIoU、Focaler-GIoU、Focaler-CIoU)
2145 4
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 2023 | MPDIoU、InnerMPDIoU助力细节涨点
YOLOv8改进 | 2023 | MPDIoU、InnerMPDIoU助力细节涨点
847 1
|
Java Maven Android开发
eclipse创建maven项目
本文介绍了在Eclipse中创建Maven项目的步骤,包括打开Eclipse、选择Java项目、完成项目创建以及自动下载插件的过程。
399 2
eclipse创建maven项目
|
传感器 人工智能 自动驾驶
智慧城市中的智能交通系统:缓解拥堵与提升出行效率
【9月更文挑战第16天】随着城市化进程加快,交通拥堵和污染等问题日益严重,成为制约城市发展的瓶颈。为此,智慧城市应运而生,其中智能交通系统(Intelligent Traffic System, ITS)作为核心部分,正逐渐成为缓解交通拥堵、提升出行效率的关键力量。本文将探讨智能交通系统如何通过信号优化、智能导航及公交调度等策略,结合实时路况监测与自动驾驶技术,为城市交通带来革命性变革。未来,随着技术进步和政策支持,智能交通系统将进一步智能化并与智慧城市其他系统深度融合,共同推动城市的可持续发展。
2002 17
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】MPDIoU:有效和准确的边界框损失回归函数 (论文笔记+引入代码)
YOLO目标检测专栏介绍了YOLO的有效改进和实战案例,包括卷积、主干网络、注意力机制和检测头的创新。提出了一种新的边界框回归损失函数MPDIoU,它基于最小点距离,能更好地处理不同宽高比的预测框,包含重叠、中心点距离和尺寸偏差的全面考虑。MPDIoU损失函数在YOLACT和YOLOv7等模型上的实验显示了优于现有损失函数的性能。此外,还介绍了WIoU_Scale类用于计算加权IoU,以及bbox_iou函数实现不同IoU变体的计算。详细实现和配置可在相应链接中查阅。