YOLOv8改进 | 损失函数篇 | SlideLoss、FocalLoss分类损失函数助力细节涨点(全网最全)

简介: YOLOv8改进 | 损失函数篇 | SlideLoss、FocalLoss分类损失函数助力细节涨点(全网最全)

一、本文介绍

本文给大家带来的是分类损失 SlideLoss、VFLoss、FocalLoss损失函数,我们之前看那的那些IoU都是边界框回归损失,和本文的修改内容并不冲突,所以大家可以知道损失函数分为两种一种是分类损失另一种是边界框回归损失,上一篇文章里面我们总结了过去百分之九十的边界框回归损失的使用方法,本文我们就来介绍几种市面上流行的和最新的分类损失函数,同时在开始讲解之前推荐一下我的专栏,本专栏的内容支持(分类、检测、分割、追踪、关键点检测),专栏目前为限时折扣,欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家,本文支持的损失函数共有如下图片所示

欢迎大家订阅我的专栏一起学习YOLO!

image.png

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、原理介绍

其中绝大多数损失在前面我们都讲过了本文主要讲一下SlidLoss的原理,SlideLoss的损失首先是由YOLO-FaceV2提出来的。

image.png

从摘要上我们可以看出SLideLoss的出现是通过权重函数来解决简单和困难样本之间的不平衡问题题,什么是简单样本和困难样本?

样本不平衡问题是一个常见的问题,尤其是在分类和目标检测任务中。它通常指的是训练数据集中不同类别的样本数量差异很大。对于人脸检测这样的任务来说,简单样本和困难样本之间的不平衡问题可以具体描述如下:

简单样本:

  • 容易被模型正确识别的样本。
  • 通常出现在数据集中的数量较多。
  • 特征明显,分类或检测边界清晰。
  • 在训练中,这些样本会给出较低的损失值,因为模型可以轻易地正确预测它们。

困难样本:

  • 模型难以正确识别的样本。
  • 在数据集中相对较少,但对模型性能的提升至关重要。
  • 可能由于多种原因变得难以识别,如遮挡、变形、模糊、光照变化、小尺寸或者与背景的低对比度。
  • 在训练中,这些样本会产生较高的损失值,因为模型很难对它们给出准确的预测。

解决样本不平衡的问题是提高模型泛化能力的关键。如果模型大部分只见过简单样本,它可能在实际应用中遇到困难样本时性能下降。因此采用各种策略来解决这个问题,例如重采样(对困难样本进行过采样或对简单样本进行欠采样)、修改损失函数(给困难样本更高的权重),或者是设计新的模型结构来专门关注困难样本。在YOLO-FaceV2中,作者通过Slide Loss这样的权重函数来让模型在训练过程中更关注那些困难样本(这也是本文的修改内容)

目录
相关文章
|
算法 计算机视觉
YOLOv8改进 | 损失函数篇 | 最新ShapeIoU、InnerShapeIoU损失助力细节涨点
YOLOv8改进 | 损失函数篇 | 最新ShapeIoU、InnerShapeIoU损失助力细节涨点
773 2
|
计算机视觉
如何理解focal loss/GIOU(yolo改进损失函数)
如何理解focal loss/GIOU(yolo改进损失函数)
|
机器学习/深度学习 计算机视觉 网络架构
改进YOLOv8:添加CBAM注意力机制(涨点明显)
改进YOLOv8:添加CBAM注意力机制(涨点明显)
7176 1
|
机器学习/深度学习
YOLOv8改进 | 损失函数篇 | 更加聚焦的边界框损失Focaler-IoU、InnerFocalerIoU(二次创新)
YOLOv8改进 | 损失函数篇 | 更加聚焦的边界框损失Focaler-IoU、InnerFocalerIoU(二次创新)
1442 0
|
机器学习/深度学习 算法 计算机视觉
【YOLOv8改进-损失函数】SlideLoss损失函数,解决样本不平衡问题
YOLO-FaceV2是基于YOLOv5的实时人脸检测模型,采用RFE模块增强小人脸检测,NWD损失处理定位偏差,SEAM注意力模块应对遮挡,Slide Loss解决样本不平衡,提升对难样本的关注。在WiderFace数据集上超越YOLO系列。论文和代码已公开。Slide Loss通过IoU加权,优化边界样本,提高模型性能。
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 损失函数篇 | QualityFocalLoss质量焦点损失(含代码 + 详细修改教程)
YOLOv8改进 | 损失函数篇 | QualityFocalLoss质量焦点损失(含代码 + 详细修改教程)
2309 2
|
10月前
|
机器学习/深度学习 编解码 Java
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
《YOLO11目标检测创新改进与实战案例》专栏已更新100+篇文章,涵盖注意力机制、卷积优化、检测头创新、损失与IOU优化、轻量级网络设计等多方面内容。每周更新3-10篇,提供详细代码和实战案例,帮助您掌握最新研究和实用技巧。[专栏链接](https://blog.csdn.net/shangyanaf/category_12810477.html)
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
|
并行计算 数据挖掘 PyTorch
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
|
算法 计算机视觉
【YOLOv8训练结果评估】YOLOv8如何使用训练好的模型对验证集进行评估及评估参数详解
【YOLOv8训练结果评估】YOLOv8如何使用训练好的模型对验证集进行评估及评估参数详解
|
编解码 算法 计算机视觉
YOLOv8数据增强预处理方式详解:包括数据增强的作用,数据增强方式与方法
YOLOv8数据增强预处理方式详解:包括数据增强的作用,数据增强方式与方法

热门文章

最新文章