YOLOv8改进 | 检测头篇 | CLLAHead分布焦点检测头(全网独创首发)

简介: YOLOv8改进 | 检测头篇 | CLLAHead分布焦点检测头(全网独创首发)

一、本文介绍

本文给大家带来的改进机制是CLLAHead,该检测头为我独家全网首发,该检测头通过多层次的特征提取和整合,利用分布焦点损失损失函数和一种注意力机制,来提高对图像中目标的识别和定位能力。这种结构特别适合于处理复杂的图像场景,其中包含多个不同大小和形状的目标,同时该检测头的参数量非常微量(之前发的一个检测头大家说参数量大,这次发一个参数量小的)。同时欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。

欢迎大家订阅我的专栏一起学习YOLO!

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、CLLAHead的核心思想

目录
相关文章
|
10月前
|
机器学习/深度学习 编解码 算法
英文论文(sci)解读复现:基于YOLOv5的自然场景下苹果叶片病害实时检测
英文论文(sci)解读复现:基于YOLOv5的自然场景下苹果叶片病害实时检测
353 0
|
3月前
|
人工智能 算法
图像伪造照妖镜!北大发布多模态LLM图像篡改检测定位框架FakeShield
北京大学研究团队提出了一种名为FakeShield的多模态框架,旨在解决图像伪造检测与定位(IFDL)中的黑箱问题及泛化能力不足。FakeShield不仅能评估图像真实性,生成篡改区域的掩码,还能提供像素级和图像级的篡改线索及详细文本描述,增强检测的可解释性。通过使用GPT-4o增强现有数据集,创建多模态篡改描述数据集(MMTD-Set),并引入领域标签引导的可解释伪造检测模块(DTE-FDM)和多模态伪造定位模块(MFLM),FakeShield在多种篡改技术的检测与定位上表现优异,为图像真实性维护提供了有力工具。
156 14
|
10月前
|
计算机视觉
YOLOv5改进 | 2023检测头篇 | 利用AFPN改进检测头适配YOLOv5版(全网独家创新)
YOLOv5改进 | 2023检测头篇 | 利用AFPN改进检测头适配YOLOv5版(全网独家创新)
240 0
YOLOv5改进 | 2023检测头篇 | 利用AFPN改进检测头适配YOLOv5版(全网独家创新)
|
10月前
|
机器学习/深度学习
YOLOv5改进 | 检测头篇 | CLLAHead分布焦点检测头(全网独创首发)
YOLOv5改进 | 检测头篇 | CLLAHead分布焦点检测头(全网独创首发)
298 1
|
10月前
|
机器学习/深度学习 编解码 计算机视觉
YOLOv8改进 | 检测头篇 | ASFF改进YOLOv8检测头(全网首发)
YOLOv8改进 | 检测头篇 | ASFF改进YOLOv8检测头(全网首发)
665 1
|
10月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 二次创新篇 | 升级版本Dyhead检测头替换DCNv3 实现完美升级(全网独家首发)
YOLOv8改进 | 二次创新篇 | 升级版本Dyhead检测头替换DCNv3 实现完美升级(全网独家首发)
592 2
|
10月前
|
机器学习/深度学习
YOLOv5改进 | 检测头篇 | CLLAHead分布式焦点损失检测头(全网独家首发)
YOLOv5改进 | 检测头篇 | CLLAHead分布式焦点损失检测头(全网独家首发)
168 0
|
10月前
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | 检测头篇 | DynamicHead支持检测和分割(不同于网上版本,全网首发)
YOLOv5改进 | 检测头篇 | DynamicHead支持检测和分割(不同于网上版本,全网首发)
552 0
|
10月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 2023检测头篇 | 利用AFPN改进检测头适配YOLOv8版(全网独家创新)
YOLOv8改进 | 2023检测头篇 | 利用AFPN改进检测头适配YOLOv8版(全网独家创新)
453 0
|
10月前
|
计算机视觉 异构计算 Python
YOLOv8改进 | 进阶实战篇 | 利用YOLOv8进行视频划定区域目标统计计数
YOLOv8改进 | 进阶实战篇 | 利用YOLOv8进行视频划定区域目标统计计数
437 0