YOLOv8改进 | 二次创新篇 | 升级版本Dyhead检测头替换DCNv3 实现完美升级(全网独家首发)

简介: YOLOv8改进 | 二次创新篇 | 升级版本Dyhead检测头替换DCNv3 实现完美升级(全网独家首发)

一、本文介绍

本文给大家带来的改进机制是在DynamicHead上替换DCNv3模块,其中DynamicHead的核心为DCNv2,但是今年新更新了DCNv3其作为v2的升级版效果肯定是更好的,所以我将其中的核心机制替换为DCNv3给Dyhead相当于做了一个升级,效果也比之前的普通版本要好,这个机制我认为是我个人融合的算是,先用先得全网无第二份此改进机制,同时我发布的一比一复现版本Dyhead也是收获了多个读者的反馈均有涨点效果,本文的DCNv3在我的数据上成功涨了四五个点,大家可以尝试效果比基础版本的Dyhead更好,该检测头非常适合大家用来发表论文!!

欢迎大家订阅我的专栏一起学习YOLO!

image.png


专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、 DCN的框架原理

首先我们先来介绍一个大的概念DCN全称为Deformable Convolutional Networks,翻译过来就是可变形卷积的意思,其是一种用于目标检测和图像分割的卷积神经网络模块,通过引入可变形卷积操作来提升模型对目标形变的建模能力。

什么是可变形卷积?我们看下图来看一下就了解了。

image.png

上图中展示了标准卷积和可变形卷积中的采样位置。在标准卷积(a)中,采样位置按照规则的网格形式排列(绿色点)。这意味着卷积核在进行卷积操作时,会在输入特征图的规则网格位置上进行采样。

而在可变形卷积(b)中,采样位置是通过引入偏移量进行变形的(深蓝色点),并用增强的偏移量(浅蓝色箭头)进行表示。这意味着在可变形卷积中,不再局限于规则的网格位置,而是可以根据需要在输入特征图上自由地进行采样。

通过引入可变形卷积,可以推广各种变换,例如尺度变换、(异向)长宽比和旋转等变换,这在(c)和(d)中进行了特殊情况的展示。这说明可变形卷积能够更灵活地适应不同类型的变换,从而增强了模型对目标形变的建模能力。

总之,标准卷积(规则采样)在进行卷积操作时按照规则网格位置进行采样,而可变形卷积通过引入偏移量来实现非规则采样,从而在形状变换(尺度、长宽比、旋转等)方面具有更强的泛化能力。

下面是一个三维的角度来分析大家应该会看的更直观。


image.png

其中左侧的是输入特征,右侧的是输出特征,我们的卷积核大小是一个3x3的,我们将输入特征中3x3区域映射为输出特征中的1x1,问题就在于这个3x3的区域怎么选择,传统的卷积就是规则的形状,可变形卷积就是在其中加入一个偏移量,然后对于个每个点分别计算,然后改变3x3区域中每个点的选取,提取一些可能具有更丰富特征的点,从而提高检测效果。

下面我们来看一下在实际检测效果中,可变形卷积的效果,下面的图片分别为大物体、中物体、小物体检测,其中红色的部分就是我们提取出来的特征。

image.png

图中的每个图像三元组展示了三个级别的3×3可变形滤波器的采样位置(每个图像中有729个红色点),以及分别位于背景(左侧)、小物体(中间)和大物体(右侧)上的三个激活单元(绿色点)。

这个图示的目的是说明在不同的物体尺度上,可变形卷积中的采样位置如何变化。在左侧的背景图像中,可变形滤波器的采样位置主要集中在图像的背景部分。在中间的小物体图像中,采样位置的焦点开始向小物体的位置移动,并在小物体周围形成更密集的采样点。在右侧的大物体图像中,采样位置进一步扩展并覆盖整个大物体,以更好地捕捉其细节和形变。

通过这些图示,我们可以观察到可变形卷积的采样位置可以根据不同的目标尺度自适应地调整,从而在不同尺度的物体上更准确地捕捉特征。这增强了模型对于不同尺度目标的感知能力,并使其更适用于不同尺度物体的检测任务,这也是为什么开头的地方我说了本文适合于各种目标的检测对象。

image.png

上图可能可能更加直观一些。

目录
相关文章
|
算法 计算机视觉
YOLOv8改进 | 损失函数篇 | 最新ShapeIoU、InnerShapeIoU损失助力细节涨点
YOLOv8改进 | 损失函数篇 | 最新ShapeIoU、InnerShapeIoU损失助力细节涨点
782 2
|
机器学习/深度学习 计算机视觉 网络架构
改进YOLOv8:添加CBAM注意力机制(涨点明显)
改进YOLOv8:添加CBAM注意力机制(涨点明显)
7203 1
|
计算机视觉
YOLOv5改进 | 检测头篇 | 增加辅助检测头利用AFPN改进Head(附详细修改教程)
YOLOv5改进 | 检测头篇 | 增加辅助检测头利用AFPN改进Head(附详细修改教程)
880 0
|
8月前
|
机器学习/深度学习 存储 TensorFlow
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
1766 11
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
|
8月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【损失函数篇】| WIoU v3:针对低质量样本的边界框回归损失函数
YOLOv11改进策略【损失函数篇】| WIoU v3:针对低质量样本的边界框回归损失函数
952 6
|
编解码 监控 计算机视觉
YOLOv8改进 | 检测头篇 | 利用DynamicHead增加辅助检测头针对性检测(四头版本)
YOLOv8改进 | 检测头篇 | 利用DynamicHead增加辅助检测头针对性检测(四头版本)
1870 0
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 损失函数篇 | SlideLoss、FocalLoss分类损失函数助力细节涨点(全网最全)
YOLOv8改进 | 损失函数篇 | SlideLoss、FocalLoss分类损失函数助力细节涨点(全网最全)
1309 0
|
并行计算 数据挖掘 PyTorch
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
|
12月前
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
17930 0
|
机器学习/深度学习 编解码 算法
YOLOv8改进 | 主干网络 | 增加网络结构增强小目标检测能力【独家创新——附结构图】
YOLOv8在小目标检测上存在挑战,因卷积导致信息丢失。本文教程将原网络结构替换为更适合小目标检测的backbone,并提供结构图。通过讲解原理和手把手教学,指导如何修改代码,提供完整代码实现,适合新手实践。文章探讨了大特征图对小目标检测的重要性,如细节保留、定位精度、特征丰富度和上下文信息,并介绍了FPN等方法。YOLOv8流程包括预处理、特征提取、融合和检测。修改后的网络结构增加了上采样和concatenate步骤,以利用更大特征图检测小目标。完整代码和修改后的结构图可在文中链接获取。