多线程(初阶七:阻塞队列和生产者消费者模型)

简介: 多线程(初阶七:阻塞队列和生产者消费者模型)



一、阻塞队列的简单介绍

首先,我们都知道,队列是先进先出的一种数据结构,而阻塞队列,是基于队列,做了一些扩展,在多线程有就非常有意义了

阻塞队列的特性:

(1)是线程安全的

(2)具有阻塞的特性

               ①当队列满了,这时不能往队列里放数据,就会阻塞等待,等队列的数据出队列后,这时队列没满,才能放数据。

               ②当队列空了,这时不能拿队列里的数据,就会阻塞等待,等有数据如队列了,这时队列不为空,才能拿数据。

这里,阻塞队列的用处非常大,基于阻塞队列的功能,就可以实现 “生产者消费者模型”。


二、生产者消费者模型

生产者消费者模型是一种很朴素的概念,描述的是一种多线程编程的方法。

1、举个栗子:

一家人包饺子,首先得和面,和完面就要开始擀饺子皮了,然后才开始包饺子,这里,因为一般家里也只有一个擀面杖,所以只能一个人擀饺子皮,其余的家人就会帮忙包饺子,假设一个人擀饺子皮,2个人包饺子,那么擀饺子皮的人就是生产者,包饺子的人就是消费者;这也就是消费者生产者模型。

一个桌子能发饺子皮的数量是有限的,当擀饺子皮的人比较快,桌子放满饺子皮后,就要等包饺子的人,消耗一些饺子皮来包饺子,才能继续擀饺子皮;而这也类似阻塞队列中队里满的情况。当包饺子的人包的比较快,桌子上的饺子皮都没了,就要等擀饺子皮的人擀了饺子皮后才能继续包饺子;而这也类似阻塞队列空的情况。不同的人分工不同,也类似多线程,各自干各自的事情。

2、引入生产者消费者模型的意义:

(1)解耦合

引入生产者消费者模型,就能更好的做到解耦合(把代码的耦合程度,从高降低,就称为解耦合)

在实际开发中,会涉及到 “分布式系统” ,服务器的整个功能不是又一个服务器完成实现的,而是由多个服务器,各自实现各自的一部分功能,再通过网络通信,把这些服务器联系起来,最终完成整个服务器的功能。粗糙流程如图:

而这时,入口服务器与A、B服务器的联系是密切相关的,请求要经过入口服务器,才能传达给A、B服务器,再A、B服务器拿到想要的数据,再返回给入口服务器,通过入口服务器,再把响应传给客户端。如果是这样,那如果请求突然骤升,这时超过入口服务器接收请求的峰值,这时入口服务器就挂了,入口服务器挂了后,A、B服务器拿不到请求,也会挂掉,这就体现了入口服务器和A、B服务器的耦合性比较高。

当我们在入口服务器和A、B服务器之间引入阻塞队列时,如图:

这时,如果入口服务器挂了,但是阻塞队列中还有请求的数据,至少不会因入口服务器挂了,A、B服务器也挂了,这样,入口服务器和A、B服务器的耦合性也就降低了。

(2)削峰填谷

如图,当客户端这边的请求突然骤增时,入口服务器都是比较能抗压的,但是也是有极限的,这时我们引入阻塞队列,就可以把这些请求数据都放进阻塞队列中,形成一个缓冲区,这样,即使外面的请求达到了峰值,也是由阻塞队列来承担,这样就形成了削峰填谷的效果。

注意:这时的阻塞队列,是基于阻塞队列这一数据结构,而实现的服务器程序,所以也叫消息队列

三、模拟实现阻塞队列

1、阻塞队列的简单介绍

在java标准库中,提供了现成的阻塞队列这一数据结构,如图:

是基于队列扩展而来的,队列有的,它也有;我们知道,入队列时可以用offer方法,出队列时可以用poll方法,在阻塞队列中,也有这两个方法,但是这两个方法是不带阻塞功能的;其中,在阻塞队列中,put是在阻塞功能的入队列,take方法是带阻塞功能的出队列

代码案例:

public class TestDemo1 {
    public static void main(String[] args) throws InterruptedException {
        BlockingQueue<String> blockingQueue = new ArrayBlockingQueue<>(10);
        blockingQueue.put("aaa");
        String s1 = blockingQueue.take();
        System.out.println("第一个打印:s1 = " + s1);
        s1 = blockingQueue.take();
        System.out.println("第二个打印:s1 = " + s1);
    }
}

执行结果:

线程卡住不动了,原因是想要第二次出队列时,队列是空的,所以要等队列有元素入队列时,才能出队列,也就是说,这是带有阻塞功能的

2、实现阻塞队列

阻塞队列是通过循环队列实现的,而队列是依靠数组来实现的,这里的阻塞队列,我们只模拟实现其中的put和take方法。

(1)实现普通队列

代码:

// 为了简单, 不写作泛型的形式. 考虑存储的元素就是单纯的 String
class MyBlockingQueue {
    private String elems[] = null;
    private int head = 0;//记录头结点
    private  int tail = 0;//记录尾结点
    private int size = 0;//队列元素个数
    //构造方法,定义队列的容量大小
    public MyBlockingQueue(int capacity) {
        this.elems = new String[capacity];
    }
    //入队列
    public void put(String elem) {
        //判断容量满了没,满了就不能入队列,要阻塞等待
        if(size >= this.elems.length) {
            //阻塞等待,先不写,先实现普通功能的队列
            return;
        }
        //入队列
        elems[tail] = elem;
        tail++;
        //因为是循环队列,所以要判断尾巴有没有超过容量大小下标,超过了就要从0开始了
        if(tail > elems.length) {
            tail = 0;
        }
        //队列元素要++
        size++;
    }
    
    //出队列
    public String take() {
        String elem = null;
        //要判断队列是不是空的,空就不能出队列了,要阻塞等待
        if(size == 0) {
            //阻塞等待,因为是先实现普通队列的功能,所以后面再补充
            return null;
        }
        elem = elems[head];
        head++;
        //因为是循环队列,所以要判断头结点有没有超过容量大小下标,超过了就要0开始了
        if(head >= elems.length) {
            head = 0;
        }
        //出队列后,队列元素要--
        size--;
        return elem;
    }
}

每个步骤说明代码中有注释。

测试一下可不可以用,如图:

是可以用的,这样,普通的队列就已经搞好了

(2)加上线程安全

我们想想put和take里面要给哪里上锁,首先,写操作肯定是要加锁的,因为多线程同时执行写操作,肯定是线程不安全的,也就是下面这段代码:

接下来,我们讨论一下这两个代码要不要加锁,以take为例,如图:

我们画一下图,会比较好理解:

如果size = -1,是不符合我们预期的,size最小也只可能是0,不可能是-1,所以我要上面的判断条件也要加锁。

而put也一样,判断条件也要加锁。

代码:

class MyBlockingQueue {
    Object locker = new Object();
    private String elems[] = null;
    private int head = 0;//记录头结点
    private  int tail = 0;//记录尾结点
    private int size = 0;//队列元素个数
    //构造方法,定义队列的容量大小
    public MyBlockingQueue(int capacity) {
        this.elems = new String[capacity];
    }
    //入队列
    public void put(String elem) {
        synchronized (locker) {
            //判断容量满了没,满了就不能入队列,要阻塞等待
            if(size >= this.elems.length) {
                //阻塞等待,先不写,先实现普通功能的队列
                return;
            }
            //因为这些都是写操作,也有读操作,多线程并发执行时,写操作是线程不安全的,要把这些打包成一个原子,加锁
            synchronized (locker) {
                //入队列
                elems[tail] = elem;
                tail++;
                //因为是循环队列,所以要判断尾巴有没有超过容量大小下标,超过了就要从0开始了
                if(tail > elems.length) {
                    tail = 0;
                }
                //队列元素要++
                size++;
            }
        }
    }
    //出队列
    public String take() {
        String elem = null;
        //因为这些都是写操作,也有读操作,多线程并发执行时,写操作是线程不安全的,要把这些打包成一个原子,加锁
        synchronized (locker) {
            //要判断队列是不是空的,空就不能出队列了,要阻塞等待
            if(size == 0) {
                //阻塞等待,因为是先实现普通队列的功能,所以后面再补充
                return null;
            }
            elem = elems[head];
            head++;
            //因为是循环队列,所以要判断头结点有没有超过容量大小下标,超过了就要0开始了
            if(head >= elems.length) {
                head = 0;
            }
            //出队列后,队列元素要--
            size--;
            return elem;
        }
    }
}

(3)加上阻塞功能

我们要加上阻塞功能,就要在这两条件判断上加上wait,我们用locker的对象给他wait,而且wait必须要在synchronized内使用,这里的locker正好能对应上;当这个队列满时,就阻塞等待,等take方法拿走一个数据时,才给他唤醒。

加上阻塞功能后的代码如下:(不是最终代码,里面还是存在线程安全问题

class MyBlockingQueue {
    Object locker = new Object();
    private String elems[] = null;
    private int head = 0;//记录头结点
    private  int tail = 0;//记录尾结点
    private int size = 0;//队列元素个数
    //构造方法,定义队列的容量大小
    public MyBlockingQueue(int capacity) {
        this.elems = new String[capacity];
    }
    //入队列
    public void put(String elem) throws InterruptedException {
        synchronized (locker) {
            //判断容量满了没,满了就不能入队列,要阻塞等待
            if (size >= this.elems.length) {
                //阻塞等待,先不写,先实现普通功能的队列
                synchronized (locker) {
                    locker.wait();
                }
            }
            //因为这些都是写操作,也有读操作,多线程并发执行时,写操作是线程不安全的,要把这些打包成一个原子,加锁
            synchronized (locker) {
                //入队列
                elems[tail] = elem;
                tail++;
                //因为是循环队列,所以要判断尾巴有没有超过容量大小下标,超过了就要从0开始了
                if(tail > elems.length) {
                    tail = 0;
                }
                //队列元素要++
                size++;
                locker.notify();
            }
        }
    }
    //出队列
    public String take() throws InterruptedException {
        String elem = null;
        //因为这些都是写操作,也有读操作,多线程并发执行时,写操作是线程不安全的,要把这些打包成一个原子,加锁
        synchronized (locker) {
            //要判断队列是不是空的,空就不能出队列了,要阻塞等待
            if (size == 0) {
                //阻塞等待,因为是先实现普通队列的功能,所以后面再补充
                synchronized (locker) {
                    locker.wait();
                }
            }
            elem = elems[head];
            head++;
            //因为是循环队列,所以要判断头结点有没有超过容量大小下标,超过了就要0开始了
            if(head >= elems.length) {
                head = 0;
            }
            //出队列后,队列元素要--
            size--;
            locker.notify();
            return elem;
        }
    }
}

加上阻塞功能的判断语句

与其对应的,一定要记住put和take后要notify,不然就会一直阻塞下去,导致程序动不了,如图:

现在进行代码分析:

当put时,队列满了,就要阻塞等待,等take这队列后,就会唤醒put操作,接着put就能入队列了;如果是take就相反,这是符合我们预期的。如果不满也不空时,每次put和take都会notify一次,这时会有影响吗?答案肯定是否定的,不会有影响,因为就算没有其他线程在等待,唤醒也没有事,不会对程序造成啥影响。而且我们现在的代码,一定是要么满,要么空,要么不满也不空。

但是,如果有两个线程同时put,现在队列是满的,A线程先阻塞,B线程也阻塞,这时有第三个线程take一次,把A线程的wait唤醒了,等A执行到下面的notify,A线程里put的notify就会唤醒B线程里的wait,但是因为A线程put了,和第三个线程的take一取一放抵消了,此时队列还是满的,因为A线程里的put把B线程里的wait唤醒了,这时已经是满了的队列还往里放元素,就造成了线程安全问题。

解决方案:把条件判断if换成while循环语句,不是只判断一次,当有其他线程把wait唤醒后,还要再判断一次这个队列是不是满的或者是空的,如果不是满的或者不是空的,才释放这个wait,不然就要继续wait,这样问题也就解决了。

最终代码:

class MyBlockingQueue {
    Object locker = new Object();
    private String elems[] = null;
    private int head = 0;//记录头结点
    private  int tail = 0;//记录尾结点
    private int size = 0;//队列元素个数
    //构造方法,定义队列的容量大小
    public MyBlockingQueue(int capacity) {
        this.elems = new String[capacity];
    }
    //入队列
    public void put(String elem) throws InterruptedException {
        synchronized (locker) {
            //判断容量满了没,满了就不能入队列,要阻塞等待
            while (size >= this.elems.length) {
                //阻塞等待,先不写,先实现普通功能的队列
                synchronized (locker) {
                    locker.wait();
                }
            }
            //因为这些都是写操作,也有读操作,多线程并发执行时,写操作是线程不安全的,要把这些打包成一个原子,加锁
            synchronized (locker) {
                //入队列
                elems[tail] = elem;
                tail++;
                //因为是循环队列,所以要判断尾巴有没有超过容量大小下标,超过了就要从0开始了
                if(tail > elems.length) {
                    tail = 0;
                }
                //队列元素要++
                size++;
                locker.notify();
            }
        }
    }
    //出队列
    public String take() throws InterruptedException {
        String elem = null;
        //因为这些都是写操作,也有读操作,多线程并发执行时,写操作是线程不安全的,要把这些打包成一个原子,加锁
        synchronized (locker) {
            //要判断队列是不是空的,空就不能出队列了,要阻塞等待
            while (size == 0) {
                //阻塞等待,因为是先实现普通队列的功能,所以后面再补充
                synchronized (locker) {
                    locker.wait();
                }
            }
            elem = elems[head];
            head++;
            //因为是循环队列,所以要判断头结点有没有超过容量大小下标,超过了就要0开始了
            if(head >= elems.length) {
                head = 0;
            }
            //出队列后,队列元素要--
            size--;
            locker.notify();
            return elem;
        }
    }
}

我们看看wait内部,可以看到它内部也是会有说明wait可能会提前被唤醒,就要我们多加一次判断,这样,用while会比用if更好,如图:

在实际开发中,生产者消费者模型,往往是多个生产者,多个消费者;这里的生产者和消费者往往不仅仅是一个线程,也可能是一个独立的服务器,甚至是一组服务器程序。

但生产者消费者模型,最核心的部分还是阻塞队列,可以使用synchronized和wait / notify 达到线程安全与阻塞。

3、运用阻塞队列的生产者消费者模型

简单的生产者消费者模型代码:

public class Test {
    public static void main(String[] args) {
        BlockingQueue<Integer> queue = new ArrayBlockingQueue<>(10);
        //生产者
        Thread t1 = new Thread(() -> {
            int n = 1;
            while (true) {
                try {
                    queue.put(n);
                    System.out.println("生产者元素:" + n);
                    n++;
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
            }
        });
        //消费者
        Thread t2 = new Thread(() -> {
            while (true) {
                try {
                    int n = queue.take();
                    System.out.println("消费者元素:" + n);
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
            }
        });
        t1.start();
        t2.start();
    }
}

执行结果:

可以看到生产者生产一个,消费者就消费一个,继续等待生产者生产元素后再消费。


都看到这了,点个赞再走吧,谢谢谢谢谢

相关文章
|
2月前
|
Java
网络 I/O:单 Selector 多线程(单线程模型)
网络 I/O:单 Selector 多线程(单线程模型)
|
1月前
|
人工智能 JSON 前端开发
【Spring boot实战】Springboot+对话ai模型整体框架+高并发线程机制处理优化+提示词工程效果展示(按照框架自己修改可对接市面上百分之99的模型)
【Spring boot实战】Springboot+对话ai模型整体框架+高并发线程机制处理优化+提示词工程效果展示(按照框架自己修改可对接市面上百分之99的模型)
|
1月前
|
存储 安全 Java
并发编程知识点(volatile、JMM、锁、CAS、阻塞队列、线程池、死锁)
并发编程知识点(volatile、JMM、锁、CAS、阻塞队列、线程池、死锁)
71 3
|
28天前
|
存储 安全 Java
Java线程池ThreadPoolExcutor源码解读详解08-阻塞队列之LinkedBlockingDeque
**摘要:** 本文分析了Java中的LinkedBlockingDeque,它是一个基于链表实现的双端阻塞队列,具有并发安全性。LinkedBlockingDeque可以作为有界队列使用,容量由构造函数指定,默认为Integer.MAX_VALUE。队列操作包括在头部和尾部的插入与删除,这些操作由锁和Condition来保证线程安全。例如,`linkFirst()`和`linkLast()`用于在队首和队尾插入元素,而`unlinkFirst()`和`unlinkLast()`则用于删除首尾元素。队列的插入和删除方法根据队列是否满或空,可能会阻塞或唤醒等待的线程,这些操作通过`notFul
44 5
|
28天前
|
存储 安全 Java
Java线程池ThreadPoolExcutor源码解读详解07-阻塞队列之LinkedTransferQueue
`LinkedTransferQueue`是一个基于链表结构的无界并发队列,实现了`TransferQueue`接口,它使用预占模式来协调生产者和消费者的交互。队列中的元素分为数据节点(isData为true)和请求节点(isData为false)。在不同情况下,队列提供四种操作模式:NOW(立即返回,不阻塞),ASYNC(异步,不阻塞,但后续线程可能阻塞),SYNC(同步,阻塞直到匹配),TIMED(超时等待,可能返回)。 `xfer`方法是队列的核心,它处理元素的转移过程。方法内部通过循环和CAS(Compare And Swap)操作来确保线程安全,同时避免锁的使用以提高性能。当找到匹
35 5
|
28天前
|
存储 安全 Java
Java线程池ThreadPoolExcutor源码解读详解04-阻塞队列之PriorityBlockingQueue原理及扩容机制详解
1. **继承实现图关系**: - `PriorityBlockingQueue`实现了`BlockingQueue`接口,提供了线程安全的队列操作。 - 内部基于优先级堆(小顶堆或大顶堆)的数据结构实现,可以保证元素按照优先级顺序出队。 2. **底层数据存储结构**: - 默认容量是11,存储数据的数组会在需要时动态扩容。 - 数组长度总是2的幂,以满足堆的性质。 3. **构造器**: - 无参构造器创建一个默认容量的队列,元素需要实现`Comparable`接口。 - 指定容量构造器允许设置初始容量,但不指定排序规则。 - 可指定容量和比较
42 2
|
28天前
|
存储 安全 Java
Java线程池ThreadPoolExcutor源码解读详解03-阻塞队列之LinkedBlockingQueue
LinkedBlockingQueue 和 ArrayBlockingQueue 是 Java 中的两种阻塞队列实现,它们的主要区别在于: 1. **数据结构**:ArrayBlockingQueue 采用固定大小的数组实现,而 LinkedBlockingQueue 则使用链表实现。 2. **容量**:ArrayBlockingQueue 在创建时必须指定容量,而 LinkedBlockingQueue 可以在创建时不指定容量,默认容量为 Integer.MAX_VALUE。 总结起来,如果需要高效并发且内存不是主要考虑因素,LinkedBlockingQueue 通常是更好的选择;
33 1
|
1月前
|
消息中间件 安全 Java
多线程案例-阻塞队列
多线程案例-阻塞队列
|
3月前
|
缓存 NoSQL 安全
Redis 新特性篇:多线程模型解读
Redis 新特性篇:多线程模型解读
50 5
|
3月前
|
消息中间件 安全 调度
多线程06 单例模式,阻塞队列以及模拟实现
多线程06 单例模式,阻塞队列以及模拟实现
28 0