代码随想录 Day35 动态规划04 01背包问题和完全背包问题 LeetCode T416 分割等和子集

简介: 代码随想录 Day35 动态规划04 01背包问题和完全背包问题 LeetCode T416 分割等和子集

背包问题

说到背包问题大家都会想到使用动规的方式来求解,那么为什么用动规呢,dp数组代表什么呢?初始化是什么,遍历方式又是什么,这篇文章笔者将详细讲解背包问题的经典例题0-1背包问题和完全背包问题的解题方式,希望能帮助到大家

1.暴力方式

有人一提到背包问题就只会使用动态规划来做,那么背包问题假如让你使用暴力求解该如何解决呢?我们以0-1背包为例,每个物品是不是只有两种状态?放或者不放,我们可以遍历所有方式,使用回溯来解决问题.

0-1背包问题解决方式(二维数组)

动规五部曲

1.明白dp数组的含义

此处dp[i][j]表示的就是从[0,i]个物品中任选,用容量为j的背包能装的最大价值.

2.数组的初始化和递推公式的理解

递推公式:

不放物品:其实就是延续上一层的最大价值即可

dp[i][j] = dp[i-1][j]

放入物品:取上一层的数据或者放入这一层的物品加上剩下的容量的最大价值,两者之间取最大值即可

dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i])

初始化数组:

首先从定义出发dp[i][0]一定得初始化为0,0容量的背包装不了东西

由于每一行的数据都是由上一行推导产生的,所以第一行的数据我们也要进行初始化,i从weight[0]开始初始化就行,因为背包的容量的大于等于第一个物品的容量才能装的进去它.

3.遍历顺序的理解

这里我们可以感受一下先遍历背包和先遍历物品的区别,其实都可以达到我们的效果,但是先

遍历物品更好理解

那么为什么两种遍历方式都可以解决问题呢?

如下图所示,因为无论是哪种遍历方式,我们的dp[i][j]都是由左上角的元素推导出来的,所以无所谓用哪种遍历顺序都可以.

for(int i = 1;i<goods;i++){
            for (int j = 1; j <= bagSize; j++) {
                if(j<weight[i]){
                    dp[i][j] = dp[i-1][j];
                }else{
                    dp[i][j] = Math.max(dp[i-1][j],value[i]+dp[i-1][j-weight[i]]);
                }
            }
        }

4.打印数组进行查看

0-1背包示例代码

public static void func1(int[] weight, int[] value, int bagSize){
        //初始化dp数组
        int goods = weight.length;
        int[][] dp = new  int[goods][bagSize+1];
        for (int i = weight[0]; i <=bagSize; i++) {
            dp[0][i] = value[0];
        }
        for(int i = 1;i<goods;i++){
            for (int j = 1; j <= bagSize; j++) {
                if(j<weight[i]){
                    dp[i][j] = dp[i-1][j];
                }else{
                    dp[i][j] = Math.max(dp[i-1][j],value[i]+dp[i-1][j-weight[i]]);
                }
            }
        }
        for (int i = 0; i < goods; i++) {
            for (int j = 0; j <=bagSize; j++) {
                System.out.print(dp[i][j]+" ");
            }
            System.out.println();
        }
    }
//main方法中代码
        int[] value = {15,20,30};
        int[] weight = {1,3,4};
        int bagSize = 4;
        func1(weight,value,bagSize);

0-1背包问题解决方式(一维数组)

1.明白dp数组的含义

这里使用一维数组滚动覆盖来代替二维数组,就类似于将一个矩阵压成了一行

我们先回顾一下二维数组的含义dp[i][j]:从[0,i]的物品中,背包容量为j能装的最大价值

这里的dp[j]就是背包容量为j能装的最大价值

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);

2.递推公式的理解

我们知道dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

然后递推公式由两个选择,一个是上一层的值和本层的物品价值加上剩余空间价值的较大值

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

3.数组的初始化

根据上面的递推公式,我们知道初始化一定不能初始化成一个大值,因为可能太大了而导致后面的dp[j-weight[i]]+value[i]无法覆盖他的值,所以我们初始化为0即可

4.遍历顺序的理解

我们先上代码,后讲解原因

我们发现这里的背包遍历是从后向前遍历的,为什么呢,举个例子

如果是从前向后遍历

那么dp[1] = dp[1-1]+value[0] = 15

dp[2] = dp[2-1] +value[0]= 30

这不符合我们0-1背包的每件物品只能使用一次的逻辑,因为这里物品1被放入了两次

而我们从后向前遍历就可以避免这个问题

dp[4] = dp[3]+value[0];

dp[3] = dp[2]+value[0];

...这里就不会存在重复计算问题

为什么上面二维数组的遍历不需要倒序呢?

因为二维数组的dp[i][j]是由上一层的元素推导出来,不会影响本层的元素

以为数组的遍历顺序只能是先遍历物品,再遍历背包!!!

我们还是举个例子来说明(一维数组,我们以二维数组的形式画出来),我们就会发现,如果用容量来遍历物品的话,其实就是每个容量的背包只取得了一个物品,与答案相悖

for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    }
}

5.打印数组进行查看

示例代码

public static void func2(int[] weight, int[] value, int bagWeight) {
        int wLen = weight.length;
        //定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值
        int[] dp = new int[bagWeight + 1];
        //遍历顺序:先遍历物品,再遍历背包容量
        for (int i = 0; i < wLen; i++) {
            for (int j = bagWeight; j >= weight[i]; j--) {
                dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
            }
        }
        //打印dp数组
        for (int j = 0; j <= bagWeight; j++) {
            System.out.print(dp[j] + " ");
        }
    }
}

LeetCode T416 等和子集问题

题目链接:416. 分割等和子集 - 力扣(LeetCode)

题目思路:

利用上述思路,这里的背包容量是数组之和的一半,重量和价值数组都等于源数组,上面给出一定的剪枝,假如出现奇数就直接返回false,出现只有一个元素也直接返回false,下面我给出解题代码.

题目代码:

class Solution {
    public boolean canPartition(int[] nums) {
        if(nums.length == 1){
            return false;
        }
        int sum = 0;
        for(int i:nums){
            sum += i;
        }
        if(sum % 2 == 1){
            return false;
        }
        int bagSize = sum/2;
        int[] dp = new int[bagSize+1];
        //初始化均为0
        for(int i = 0;i<nums.length;i++){
            for(int j = bagSize;j>=nums[i];j--){
                dp[j] = Math.max(dp[j],dp[j-nums[i]]+nums[i]);
            }
        }
        if(dp[bagSize] == bagSize){
            return true;
        }
       return false;
    }
}
相关文章
|
4月前
|
算法
LeetCode第90题子集II
LeetCode第90题"子集II"的解题方法,通过排序和回溯算法生成所有不重复的子集,并使用一个boolean数组来避免同一层中的重复元素,展示了解决这类问题的编码技巧。
LeetCode第90题子集II
|
4月前
|
Python
【Leetcode刷题Python】131. 分割回文串
LeetCode题目131的Python编程解决方案,题目要求将给定字符串分割成所有可能的子串,且每个子串都是回文串,并返回所有可能的分割方案。
31 2
|
4月前
|
Python
【Leetcode刷题Python】416. 分割等和子集
LeetCode 416题 "分割等和子集" 的Python解决方案,使用动态规划算法判断是否可以将数组分割成两个元素和相等的子集。
41 1
|
4月前
|
索引 Python
【Leetcode刷题Python】78. 子集
LeetCode题目78的Python编程解决方案,题目要求给定一个互不相同的整数数组,返回该数组所有可能的子集(幂集),且解集中不能包含重复的子集。
29 1
|
4月前
|
算法
LeetCode第78题子集
文章分享了LeetCode第78题"子集"的解法,使用递归和回溯算法遍历所有可能的子集,展示了将子集问题视为树形结构进行遍历的解题技巧。
|
6月前
|
缓存
力扣每日一题 6/14 动态规划+数组
力扣每日一题 6/14 动态规划+数组
43 1
|
6月前
|
算法 索引
力扣每日一题 6/28 动态规划/数组
力扣每日一题 6/28 动态规划/数组
55 0
|
6月前
|
存储
力扣每日一题 6/19 排序+动态规划
力扣每日一题 6/19 排序+动态规划
36 0
|
6月前
|
算法
力扣每日一题 6/16 字符串 + 随机一题 动态规划/数学
力扣每日一题 6/16 字符串 + 随机一题 动态规划/数学
50 0
|
6月前
|
机器人
【LeetCode】--- 动态规划 集训(二)
【LeetCode】--- 动态规划 集训(二)
45 0