Python 教程之 Pandas(12)—— series 的二元运算

简介: Python 教程之 Pandas(12)—— series 的二元运算

series 的二元运算

我们可以对序列进行二元运算,如加法、减法和许多其他操作。为了对系列执行二元运算,我们必须使用一些函数,比如.add().sub()等等。

代码#1:

# importing pandas module  
import pandas as pd  
# 创建一个 series
data = pd.Series([5, 2, 3,7], index=['a', 'b', 'c', 'd'])
# 创建一个 series
data1 = pd.Series([1, 6, 4, 9], index=['a', 'b', 'd', 'e'])
print(data, "\n\n", data1)

image.png

.add()现在我们使用函数添加两个 series。

# 使用 .add 添加两个 series
data.add(data1, fill_value=0)

输出:

image.png

代码 #2:

# importing pandas module  
import pandas as pd  
# 创建一个 series
data = pd.Series([5, 2, 3,7], index=['a', 'b', 'c', 'd'])
# 创建一个 series
data1 = pd.Series([1, 6, 4, 9], index=['a', 'b', 'd', 'e'])
print(data, "\n\n", data1)

image.png

现在我们使用.sub函数减去两个系列。

# 使用 .sub 减去两个 series
data.sub(data1, fill_value=0)

输出:

image.png

series 上的二元运算方法:

功能 描述
add() 方法用于向调用者系列添加具有相同长度的系列或类似列表的对象
sub() 方法用于从调用者系列中减去具有相同长度的系列或类似对象的列表
mul() 方法用于将具有相同长度的系列或列表类对象与调用者系列相乘
div() 方法用于按调用者系列划分系列或具有相同长度的类似对象的列表
sum() 返回请求轴的值的总和
prod() 返回请求轴的值的乘积
mean() 返回请求轴的平均值
pow() 方法用于将传递的系列的每个元素作为调用者系列的指数幂并返回结果
abs() 方法用于获取Series/DataFrame中每个元素的绝对数值
cov() 方法用于求两个序列的协方差


目录
相关文章
|
15天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
43 0
|
13天前
|
索引 Python
Pandas 数据结构 - Series
10月更文挑战第26天
29 2
Pandas 数据结构 - Series
|
9天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
21 2
|
14天前
|
SQL 数据采集 数据挖掘
Pandas 教程
10月更文挑战第25天
25 2
|
17天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
37 5
|
16天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
30 2
|
7天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
7天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
1月前
|
机器学习/深度学习 数据采集 算法
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
【10月更文挑战第5天】随着数据科学和机器学习领域的快速发展,处理大规模数据集的能力变得至关重要。Python凭借其强大的生态系统,尤其是NumPy、Pandas和SciPy等库的支持,在这个领域占据了重要地位。本文将深入探讨这些库如何帮助科学家和工程师高效地进行数据分析,并通过实际案例来展示它们的一些高级应用。
47 0
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
|
1月前
|
数据采集 数据可视化 数据挖掘
Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
【10月更文挑战第3天】Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
85 0