​​力扣刷MySQL-第九弹(详细讲解)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: ​​力扣刷MySQL-第九弹(详细讲解)


目录

变更性别

合作过至少三次的演员和导演

变更性别

+-------------+----------+
| Column Name | Type |
+-------------+----------+
| id | int |
| name | varchar |
| sex | ENUM |
| salary | int |
+-------------+----------+
id 是这个表的主键(具有唯一值的列)。
sex 这一列的值是 ENUM 类型,只能从 ('m', 'f') 中取。
本表包含公司雇员的信息。
请你编写一个解决方案来交换所有的 'f' 和 'm' (即,将所有 'f' 变为 'm' ,反之亦然),仅使用 单个 update 语句 ,且不产生中间临时表。

注意,你必须仅使用一条 update 语句,且 不能 使用 select 语句。

结果如下例所示。

示例 1:

输入:
Salary 表:
+----+------+-----+--------+
| id | name | sex | salary |
+----+------+-----+--------+
| 1 | A | m | 2500 |
| 2 | B | f | 1500 |
| 3 | C | m | 5500 |
| 4 | D | f | 500 |
+----+------+-----+--------+
输出:
+----+------+-----+--------+
| id | name | sex | salary |
+----+------+-----+--------+
| 1 | A | f | 2500 |
| 2 | B | m | 1500 |
| 3 | C | f | 5500 |
| 4 | D | m | 500 |
+----+------+-----+--------+
解释:
(1, A) 和 (3, C) 从 'm' 变为 'f' 。
(2, B) 和 (4, D) 从 'f' 变为 'm' 。

使用 UPDATE 语句更新 Salary 表。
在 SET 子句中,将 sex 列设置为 CASE WHEN 条件表达式。
在 CASE WHEN 中,检查当前值是否为 'm',如果是,则将其更改为 'f';如果不是,则将其更改为 'm'。
不需要 WHERE 子句,因为我们要更新整个表。

UPDATE Salary
SET sex = CASE WHEN sex = 'm' THEN 'f' ELSE 'm' END;

合作过至少三次的演员和导演

+-------------+---------+
| Column Name | Type |
+-------------+---------+
| actor_id | int |
| director_id | int |
| timestamp | int |
+-------------+---------+
timestamp 是这张表的主键(具有唯一值的列).

编写解决方案找出合作过至少三次的演员和导演的 id 对 (actor_id, director_id)

示例 1:

输入:
ActorDirector 表:
+-------------+-------------+-------------+
| actor_id | director_id | timestamp |
+-------------+-------------+-------------+
| 1 | 1 | 0 |
| 1 | 1 | 1 |
| 1 | 1 | 2 |
| 1 | 2 | 3 |
| 1 | 2 | 4 |
| 2 | 1 | 5 |
| 2 | 1 | 6 |
+-------------+-------------+-------------+
输出:
+-------------+-------------+
| actor_id | director_id |
+-------------+-------------+
| 1 | 1 |
+-------------+-------------+
解释:
唯一的 id 对是 (1, 1),他们恰好合作了 3 次。

使用 GROUP BY 语句按照 actor_id 和 director_id 对 ActorDirector 表进行分组。
对它们进行分组后的结果是分成三组的,如下图

使用 HAVING 子句筛选出合作次数大于等于三次的组。
在 HAVING 子句中,使用 COUNT(*) 函数来计算每个组的合作次数,并将其与 3 进行比较。
SELECT actor_id 和 director_id 作为结果。

SELECT actor_id, director_id
FROM ActorDirector
GROUP BY actor_id, director_id
HAVING COUNT(*) >= 3;

希望对你有帮助!

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
SQL ice
力扣刷MySQL-第八弹(详细讲解)
力扣刷MySQL-第八弹(详细讲解)
|
SQL 关系型数据库 MySQL
力扣刷MySQL-第七弹(详细讲解)
力扣刷MySQL-第七弹(详细讲解)
|
SQL 关系型数据库 MySQL
力扣刷MySQL-第六弹(详细讲解)
力扣刷MySQL-第六弹(详细讲解)
|
SQL 测试技术
力扣刷MySQL-第五弹(详细讲解)
力扣刷MySQL-第五弹(详细讲解)
力扣刷MySQL-第四弹(详细讲解)
力扣刷MySQL-第四弹(详细讲解)
|
SQL 关系型数据库 MySQL
力扣刷MySQL-第三弹(详细讲解)
力扣刷MySQL-第三弹(详细讲解)
|
SQL Python
力扣刷MySQL-第二弹(详细解析)
力扣刷MySQL-第二弹(详细解析)
|
开发框架 关系型数据库 MySQL
力扣刷MySQL-第一弹(详细解析)
力扣刷MySQL-第一弹(详细解析)
|
2月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
129 3
|
2月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。

推荐镜像

更多