Prometheus 的监控方法论

本文涉及的产品
可观测监控 Prometheus 版,每月50GB免费额度
简介: 【1月更文挑战第24天】

许多监控框架的重点都是故障检测,即检测是否发生了特定的系统事件或处于什么状态(这是Nagios的风格)。当收到有关特定系统事件的通知时,我们通常会查看收集到的任何指标,以找出发生的确切情况及其原因。在这个思路下,指标被视为故障检测的副产品或者补充。


正确使用指标可以提供基础设施的动态实时信息,帮助你管理和做出有关系统的最佳决策。此外,通过异常检测和模式分析,指标有可能在故障或问题发生之前,或者是在特定系统事件导致系统瘫痪之前就有所察觉。


我们通常以固定的时间间隔收集数据,该时间间隔被称为颗粒度(granularity)或分辨率(resolution),取值可以从1秒到5分钟,甚至到60分钟或更长。正确地选择指标的颗粒度至关重要,若选择得太粗糙,则很容易错过某些细节。


第一种指标类型是测量型(gauge),这种类型是上下增减的数字,本质上是特定度量的快照。常见的监控指标如CPU、内存和磁盘使用率等都属于这个类型。


第二种类型是计数型(counter),这种类型是随着时间增加而不会减少的数字。虽然它们永远不会减少,但有时可以将其重置为零并再次开始递增。应用程序和基础设施的计数型示例包括系统正常运行时间、设备收发包的字节数或登录次数。


第三种类型直方图(histogram)是对观察点进行采样的指标类型,可以展现数据集的频率分布。将数据分组在一起并以这样的方式显示,这个被称为“分箱”(binning)的过程可以直观地查看数值的相对大小。


USE是使用率(Utilization)、饱和度(Saturation)和错误(Error)的缩写,该方法是由Netflix的内核和性能工程师Brendan Gregg开发的。USE方法建议创建服务器分析清单,以便快速识别问题。


USE方法可以概括为:针对每个资源,检查使用率、饱和度和错误。该方法对于监控那些受高使用率或饱和度的性能问题影响的资源来说是最有效的


资源:系统的一个组件。在Gregg对模型的定义中,它是一个传统意义上的物理服务器组件,如CPU、磁盘等,但许多人也将软件资源包含在定义中。


使用率:资源忙于工作的平均时间。它通常用随时间变化的百分比表示。


饱和度:资源排队工作的指标,无法再处理额外的工作。通常用队列长度表示。


错误:资源错误事件的计数。


Google的四个黄金指标主要关注的不是系统级的时间序列数据,更多是针对应用程序或面向用户的部分


延迟:服务请求所花费的时间,需要区分成功请求和失败请求。例如,失败请求可能会以非常低的延迟返回错误结果。

流量:针对系统,例如,每秒HTTP请求数,或者数据库系统的事务。


错误:请求失败的速率,要么是HTTP 500错误等显式失败,要么是返回错误内容或无效内容等隐式失败,或者基于策略原因导致的失败——例如,强制要求响应时间超过30ms的请求视为错误。


饱和度:应用程序有多“满”,或者受限的资源,如内存或IO。这还包括即将饱和的部分,例如正在快速填充的磁盘。


要建立一个出色的通知系统,需要考虑以下基础信息:

  1. 哪些问题需要通知
  2. 谁需要被告知
  3. 如何告知他们
  4. 多久告知他们一次
  5. 何时停止告知以及何时升级到其他人
相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
相关文章
|
2月前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第26天】Prometheus与Grafana是智能运维中的强大组合,前者是开源的系统监控和警报工具,后者是数据可视化平台。Prometheus具备时间序列数据库、多维数据模型、PromQL查询语言等特性,而Grafana支持多数据源、丰富的可视化选项和告警功能。两者结合可实现实时监控、灵活告警和高度定制化的仪表板,广泛应用于服务器、应用和数据库的监控。
295 3
|
13天前
|
存储 数据采集 Prometheus
Grafana Prometheus Altermanager 监控系统
Grafana、Prometheus 和 Alertmanager 是一套强大的开源监控系统组合。Prometheus 负责数据采集与存储,Alertmanager 处理告警通知,Grafana 提供可视化界面。本文简要介绍了这套系统的安装配置流程,包括各组件的下载、安装、服务配置及开机自启设置,并提供了访问地址和重启命令。适用于希望快速搭建高效监控平台的用户。
83 20
|
9天前
|
Prometheus 监控 Cloud Native
Prometheus+Grafana监控Linux主机
通过本文的步骤,我们成功地在 Linux 主机上使用 Prometheus 和 Grafana 进行了监控配置。具体包括安装 Prometheus 和 Node Exporter,配置 Grafana 数据源,并导入预设的仪表盘来展示监控数据。通过这种方式,可以轻松实现对 Linux 主机的系统指标监控,帮助及时发现和处理潜在问题。
44 7
|
5月前
|
Prometheus 监控 Cloud Native
【监控】prometheus传统环境监控告警常用配置
【监控】prometheus传统环境监控告警常用配置
【监控】prometheus传统环境监控告警常用配置
|
15天前
|
Prometheus 运维 监控
Prometheus+Grafana+NodeExporter:构建出色的Linux监控解决方案,让你的运维更轻松
本文介绍如何使用 Prometheus + Grafana + Node Exporter 搭建 Linux 主机监控系统。Prometheus 负责收集和存储指标数据,Grafana 用于可视化展示,Node Exporter 则采集主机的性能数据。通过 Docker 容器化部署,简化安装配置过程。完成安装后,配置 Prometheus 抓取节点数据,并在 Grafana 中添加数据源及导入仪表盘模板,实现对 Linux 主机的全面监控。整个过程简单易行,帮助运维人员轻松掌握系统状态。
111 3
|
15天前
|
Prometheus 监控 Cloud Native
无痛入门Prometheus:一个强大的开源监控和告警系统,如何快速安装和使用?
Prometheus 是一个完全开源的系统监控和告警工具包,受 Google 内部 BorgMon 系统启发,自2012年由前 Google 工程师在 SoundCloud 开发以来,已被众多公司采用。它拥有活跃的开发者和用户社区,现为独立开源项目,并于2016年加入云原生计算基金会(CNCF)。Prometheus 的主要特点包括多维数据模型、灵活的查询语言 PromQL、不依赖分布式存储、通过 HTTP 拉取时间序列数据等。其架构简单且功能强大,支持多种图形和仪表盘展示模式。安装和使用 Prometheus 非常简便,可以通过 Docker 快速部署,并与 Grafana 等可
104 2
|
2月前
|
存储 Prometheus 监控
监控堆外第三方监控工具Prometheus
监控堆外第三方监控工具Prometheus
54 3
|
2月前
|
存储 Prometheus 运维
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案。该集成结合了ARMS的基础设施监控能力和Prometheus的灵活配置及社区支持,实现了全面、精准的系统状态、性能和错误监控,提升了应用的稳定性和管理效率。通过统一的数据视图和高级查询功能,帮助企业有效应对云原生挑战,促进业务的持续发展。
48 3
|
2月前
|
Prometheus 监控 Cloud Native
在 HBase 集群中,Prometheus 通常监控哪些类型的性能指标?
在 HBase 集群中,Prometheus 监控关注的核心指标包括 Master 和 RegionServer 的进程存在性、RPC 请求数、JVM 内存使用率、磁盘和网络错误、延迟和吞吐量、资源利用率及 JVM 使用信息。通过 Grafana 可视化和告警规则,帮助管理员实时监控集群性能和健康状况。
|
2月前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第27天】在智能运维中,Prometheus和Grafana的组合已成为监控和告警体系的事实标准。Prometheus负责数据收集和存储,支持灵活的查询语言PromQL;Grafana提供数据的可视化展示和告警功能。本文介绍如何配置Prometheus监控目标、Grafana数据源及告警规则,帮助运维团队实时监控系统状态,确保稳定性和可靠性。
266 0