KVCache原理简述

简介: KVCache原理简述

在GPT的推理过程中,它根据完整的提问和回答的已生成部分,来生测下一个词(的概率)。

例如,我们的提问是【天王盖地虎,】,回答是【宝塔镇河妖。】。

那么第一次,GPT根据【天王盖地虎,】生成【宝】,之后根据【天王盖地虎,宝】生成【塔】,以此类推,直到碰上终止符。

这里面提问【天王盖地虎,】的QKV实际上重复计算了很多遍。由于GPT是单向注意力,每层的提问的KV只根据上一层的提问的KV(或提问的嵌入向量)计算,不跟据回答中任何字符的KV计算,完全可以把它们缓存起来避免重复计算。

如下图所示:

改进之后,我们GPT根据【天王盖地虎,】生成【宝】,同时还有KV(天王盖地虎,),然后根据KV(天王盖地虎,)和【宝】生成【塔】以及KV(天王盖地虎,宝),以此类推。

至于为什么不缓存Q,因为推理场景下我们只取最后一个词,那么每层输出HS[-1]就可以了。HS[-1]根据全部的V和注意力矩阵的最后一行A[-1]计算,而A[-1]根据Q[-1]和全部的K计算,Q[-1]只根据输入最后一个字符X[-1]计算。

所以我们通过传入KVCache保证K和V是完整的,输入字符只传入最后一个,也就是上一次GPT生成出来的字符,就可以了。

相关文章
|
存储 缓存 Java
仅花200行代码,如何将60万行的RocksDB改造成协程
采用少量手动修改+自动代码转换的方式,将大型多线程程序改造成协程。在某些重IO、高并发的场景中,帮助业务取得了性能翻倍的效果。
56566 3
仅花200行代码,如何将60万行的RocksDB改造成协程
|
4月前
|
机器学习/深度学习 缓存 监控
大模型推理优化技术:KV缓存机制详解
本文深入探讨了大语言模型推理过程中的关键技术——KV缓存(Key-Value Cache)机制。通过对Transformer自注意力机制的分析,阐述了KV缓存的工作原理、实现方式及其对推理性能的显著优化效果。文章包含具体的代码实现和性能对比数据,为开发者理解和应用这一关键技术提供实践指导。
1502 8
|
7月前
|
存储 机器学习/深度学习 缓存
性能最高提升7倍?探究大语言模型推理之缓存优化
本文探讨了大语言模型(LLM)推理缓存优化技术,重点分析了KV Cache、PagedAttention、Prefix Caching及LMCache等关键技术的演进与优化方向。文章介绍了主流推理框架如vLLM和SGLang在提升首Token延迟(TTFT)、平均Token生成时间(TPOT)和吞吐量方面的实现机制,并展望了未来缓存技术的发展趋势。
2305 12
性能最高提升7倍?探究大语言模型推理之缓存优化
|
缓存 NoSQL 调度
Tair:基于KV缓存的推理加速服务
Tair 是阿里云基于KV缓存的推理加速服务,旨在优化大模型推理过程中的性能与资源利用。内容分为三部分:首先介绍大模型推理服务面临的挑战,如性能优化和服务化需求;其次讲解Nvidia TensorRT-LLM推理加速库的特点,包括高性能、功能丰富和开箱即用;最后重点介绍基于KVCache优化的推理加速服务,通过Tair的KV缓存技术提升推理效率,特别是在处理长上下文和多人对话场景中表现出色。整体方案结合了硬件加速与软件优化,实现了显著的性能提升和成本降低。
1181 3
|
10月前
|
存储 API 开发工具
DeepSeek 3FS解读与源码分析(5):客户端解读
本文深入解析了3FS的客户端模式,包括FUSE Client和Native Client(USRBIO)。
DeepSeek 3FS解读与源码分析(5):客户端解读
|
11月前
|
消息中间件 存储 负载均衡
AI 推理场景的痛点和解决方案
一个典型的推理场景面临的问题可以概括为限流、负载均衡、异步化、数据管理、索引增强 5 个场景。通过云数据库 Tair 丰富的数据结构可以支撑这些场景,解决相关问题,本文我们会针对每个场景逐一说明。
1635 148
AI 推理场景的痛点和解决方案
|
11月前
|
存储 缓存 人工智能
阿里云Tair KVCache:打造以缓存为中心的大模型Token超级工厂
Tair KVCache 是阿里云推出的面向大语言模型推理场景的缓存加速服务,基于分布式内存池化和分级缓存体系,解决显存墙与带宽瓶颈问题。为万亿参数模型的高效推理提供技术保障,推动 AI 算力进化与规模化应用。
|
10月前
|
人工智能 程序员 Go
一文掌握 MCP 上下文协议:从理论到实践
本文介绍了 模型上下文协议(Model Context Protocol,MCP),一种用于规范大型语言模型(LLM)与外部数据源及工具之间交互的开放标准。内容涵盖了 MCP 协议的整体架构(客户端与服务器的一对一连接模式)、消息传输机制(采用 JSON-RPC 2.0 格式)、以及客户端与服务器支持的核心原语。
4833 70
|
11月前
|
存储 人工智能 编解码
Deepseek 3FS解读与源码分析(2):网络通信模块分析
2025年2月28日,DeepSeek 正式开源其颠覆性文件系统Fire-Flyer 3FS(以下简称3FS),重新定义了分布式存储的性能边界。本文基于DeepSeek发表的技术报告与开源代码,深度解析 3FS 网络通信模块的核心设计及其对AI基础设施的革新意义。
Deepseek 3FS解读与源码分析(2):网络通信模块分析