Python 进阶指南(编程轻松进阶):七、编程术语

简介: Python 进阶指南(编程轻松进阶):七、编程术语


在 XKCD 漫画《飞人五号》(xkcd.com/1133)中,网络漫画的艺术家兰道尔·门罗只用了 1000 个最常见的英语单词,就创作出了土星五号火箭的技术示意图。这部漫画把所有的技术术语分解成小孩子能理解的句子。但这也说明了为什么我们不能用简单的术语解释一切:对于外行观众来说,书中是这样解释的"如果系统出现故障,发生了火灾,致使他们无法去太空"。比我们说帮助人们快速逃生的“发射逃生系统”更容易理解。但是对于美国宇航局的工程师来说,这种说法还是太啰嗦了。即便如此,他们可能更愿意使用首字母缩写词 LES。

虽然计算机术语可能会让新程序员感到困惑和恐惧,但它是基本功。Python 和软件开发中的几个术语在含义上有细微的差别,即使是有经验的开发人员有时也会不小心混淆概念。这些术语的技术定义在不同的编程语言中可能有所不同,但本章涵盖了与 Python 相关的术语。您将对它们背后的编程语言概念有一个泛泛的理解。

本章假设你还不熟悉类和面向对象编程(OOP)。我在这里限制了对类和其他 OOP 术语的解释,但是这些术语在第 15 章到第 17 章中有更详细的解释。

定义

即使只有两个程序员,他们关于语义的争论也会喋喋不休。语言在不停的变化,人类是语言的主人,不要本末倒置了。一些开发人员使用术语的方式可能略有不同,但是熟悉这些术语仍然是有用的。本章探讨了这些术语以及它们之间的比较。如果你需要一个按字母顺序排列的术语表,你可以根据docs.python.org/3/glossary.html官方的 Python 词汇表来提供规范的定义。

毫无疑问,一些程序员会阅读本章中的定义,并提出一些特例或例外。这一章并不是一个权威的指南,而是给你一个通俗易懂的定义,即使它们并不全面。正如编程工作一样,总有更多的东西需要学习。

Python 是语言,也是解释器

单词 Python 可以有多种解释。Python 编程语言的名字来自英国喜剧团体 Monty Python,而不是蛇(尽管 Python 教程和文档同时引用了 Monty Python 和蛇)。类似地, Python 对于计算机编程可以有两种含义。

当我们说“Python 运行一个程序”或“Python 将引发一个异常”时,我们指的是 Python 解释器——读取.py 脚本并执行其指令。当我们说“Python 解释器”时,我们几乎总是在谈论由 Python 软件基金会维护的 CPython、Python 解释器,可在www.python.org获得。CPython 是 Python 语言的一个实现——也就是说,是按照规范创建的软件——但是还有其他的。虽然 CPython 是用 C 编程语言编写的,但是为了运行与 Java 程序互操作的 Python 脚本, Jython 是用 Java 编写的。 PyPy,一个针对 Python 的即时编译器,在程序执行时编译,是用 Python 编写的。

所有这些实现都运行用 Python 编程语言编写的源代码,这就是我们所说的“这是一个 Python 程序”或“我正在学习 Python”,在理想情况下,任何 Python 解释器都可以运行用 Python 语言编写的任何源代码;然而,在现实世界中,解释器之间会有一些轻微的不兼容和差异。CPython 被称为 Python 语言的参考实现,因为如果 CPython 和另一个解释器解释 Python 代码的方式有差异,CPython 的行为被认为是规范和正确的。

垃圾收集

在许多早期的编程语言中,程序员必须手动的为数据结构分配然后释放内存。手动内存分配是许多错误的来源,例如内存泄漏(程序员忘记释放内存)或双重释放错误(程序员两次释放相同的内存,导致数据损坏)。

为了避免这些错误,Python 使用了垃圾收集,这是一种自动内存管理的方式,可以让计算机自动分配和释放内存,这样程序员就省事多了。您可以将垃圾收集视为内存回收,因为它使内存可用于新数据。例如,在交互式 Shell 中输入以下内容:

>>> def someFunction():
...    print('someFunction() called.')
...    spam = ['cat', 'dog', 'moose']
...
>>> someFunction()
someFunction() called.

当调用someFunction()时,Python 为列表['cat', 'dog', 'moose']分配内存。程序员不需要计算需要多少字节的内存,因为 Python 会自动管理。当函数调用返回时,Python 的垃圾收集器将释放局部变量,使内存可用于其他数据。垃圾收集使编程变得更加容易,也更不容易出错。

字面值

一个字面值是源代码中一个固定的、打印出来的值的文本。在下面的代码示例中

>>> age = 42 + len('Zophie')

42'Zophie'文本是整数和字符串字面值。可以把字面值想象成一个出现在源代码文本中的值。在 Python 源代码中,只有内置数据类型可以有字面值值,所以变量age不是字面值值。表 7-1 列出了一些 Python 字面值的例子。

表 7-1:Python 中字面值的例子

字面值 数据类型
42 整数
3.14 浮点数
1.4886191506362924e+36 浮点数
"""Howdy!""" 字符串
r'Green\Blue' 字符串
[] 列表
{'name': 'Zophie'} 字典
b'\x41' 字节
True 布尔值
None 空类型

吹毛求疵的人会说我的一些说法不是基于官方 Python 语言文档。从技术上讲,-5不是 Python 中的字面值,因为该语言将负号(-)定义为对5字面值进行操作的运算符。此外,TrueFalseNone被认为是 Python 关键字而不是字面值,而[]{}被称为显示原子,这取决于您正在查看的是官方文档的哪一部分。无论如何,字面值是软件专业人员在所有这些例子中使用的一个常用术语。

关键字

每种编程语言都有自己的关键字。Python 关键字作为编程语言的一部分被预先保留下来的,不能用作变量名(即标识符)。例如,你不能有一个名为while的变量,因为while是一个保留用于while循环的关键字。以下是 Python 3.9 的一些 Python 关键字。

| and | continue | finally | is | raise |

| as | def | for | lambda | return |

| assert | del | from | None | True |

| async | elif | global | nonlocal | try |

| await | else | if | not | while |

| break | except | import | or | with |

| class | False | in | pass | yield |

请注意,Python 关键字始终是英语,在其他语言中不可用。例如,下面的函数具有用西班牙语编写的标识符,但是defreturn关键字仍然是英语。

def agregarDosNúmeros(primerNúmero, segundoNúmero):
   return primerNúmero + segundoNúmero

不幸的是,对于 65 亿不说英语的人来说,英语主宰了编程领域。

对象、值、实例和标识

一个对象是一段数据的表示,比如一个数字、一些文本或者一个更复杂的数据结构,比如一个列表或者字典。所有对象都可以存储在变量中,作为参数传递给函数调用,并从函数调用中返回。

所有对象都有值、标识和数据类型。是对象表示的数据,比如整数42或者字符串hello。尽管有些令人困惑,但一些程序员将术语值用作对象的同义词,尤其是对于像整数或字符串这样的简单数据类型。例如,包含42的变量是包含整数值的变量,但我们也可以说它是包含值为42的整数对象的变量。

创建了一个带有标识的对象,它是一个唯一的整数,可以通过调用id()函数来查看。例如,在交互式 Shell 中输入以下代码:

>>> spam = ['cat', 'dog', 'moose']
>>> id(spam)
33805656

变量spam存储列表数据类型的对象。它的值是['cat', 'dog', 'moose']。它的 id 是33805656,尽管整数 ID 在每次程序运行时都会变化,所以你可能会在你的计算机上得到一个不同的 ID。一旦创建,只要程序运行,对象的标识就不会改变。尽管数据类型和对象的标识永远不会改变,但对象的值可以改变,正如我们将在本例中看到的:

>>> spam.append('snake')
>>> spam
['cat', 'dog', 'moose', 'snake']
>>> id(spam)
33805656

现在列表中添加了'snake'。但是从id(spam)返回结果可以看出,它的 id 没有改变,还是同一个列表。但是,让我们看看当您输入以下代码时会发生什么:

>>> spam = [1, 2, 3]
>>> id(spam)
33838544

spam中的值已被具有新标识的新列表对象覆盖:33838544而不是33805656。像spam这样的标识符标识不同,因为多个标识符可以引用同一个对象,就像这个例子中两个变量被分配给同一个字典一样:

>>> spam = {'name': 'Zophie'}
>>> id(spam)
33861824
>>> eggs = spam
>>> id(eggs)
33861824

spameggs标识符的 id 都是33861824,因为它们引用同一个字典对象。现在在交互 Shell 中更改spam的值:

>>> spam = {'name': 'Zophie'}
>>> eggs = spam
>>> spam['name'] = 'Al'  # 1
>>> spam
{'name': 'Al'}
>>> eggs 
{'name': 'Al'} # 2

你会看到对spam 1 的改动也出现在eggs 2 中。原因是它们都指同一个对象。


变量隐喻:盒子与标签

很多入门书籍用盒子来比喻变量,这是一种过于简单化的做法。很容易把变量想象成一个存储值的盒子,就像图 7-1 中那样,但是当提到引用时,这个比喻就站不住脚了。前面的spameggs变量没有存储单独的字典;相反,它们将同一本字典的引用存储在计算机内存中。

图 7-1:很多书上说你可以把一个变量想象成一个包含一个值的盒子。

在 Python 中,所有变量在技术上都是引用,而不是值的容器,不管它们的数据类型如何。盒子的比喻很简单,但也有缺陷。不要把变量想象成盒子,你可以把变量想象成内存中对象的标签。图 7-2 显示了先前spameggs示例上的标签。

图 7-2:变量也可以认为是值上的标签。

因为多个变量可以引用同一个对象,所以该对象可以“存储”在多个变量中。多个盒子不能存储同一个对象,所以使用标签隐喻可能更容易。Ned Batchelder 的 PyCon 2015 演讲“关于 Python 名称和值的事实和误解”在youtu.be/_AEJHKGk9ns有关于这个主题的更多信息。


如果不理解=赋值操作符总是复制引用,而不是对象,你可能会认为你在复制一个对象的副本,而实际上你是在复制对原始对象的引用。幸运的是,对于整数、字符串和元组这样的不可变值来说,这不是问题,原因我将在 114 页的“可变和不可变”中解释。

您可以使用is操作符来比较两个对象是否具有相同的 id。相反,==操作符只检查对象值是否相同。你可以认为x is yid(x) == id(y)的简写。在交互式 Shell 中输入以下内容,以查看不同之处:

>>> spam = {'name': 'Zophie'} 
>>> eggs = spam # 1
>>> spam is eggs 
True
>>> spam == eggs 
True
>>> bacon = {'name': 'Zophie'}  # 2
>>> spam == bacon 
True
>>> spam is bacon 
False

变量spameggs引用同一个字典对象 1 ,所以它们的 id 和值是相同的。但是bacon引用了另一个的字典对象 2 ,即使它包含与spameggs相同的数据。相同的数据意味着baconspameggs具有相同的值,但它们是具有两种不同 id 的两个不同对象。

元素

在 Python 中,容器对象内部的对象,如列表或字典,也被称为元素。例如,列表['dog', 'cat', 'moose']中的字符串是对象,但也被称为元素。

可变和不可变

如前所述,Python 中的所有对象都有值、数据类型和标识,其中只有值可以更改。如果你可以改变对象的值,那么它就是一个可变的对象。如果你不能改变它的值,它就是一个不可变的对象。表 7-2 列出了 Python 中一些可变和不可变的数据类型。

表 7-2:Python 的一些可变和不可变数据类型

可变数据类型 不可变数据类型
列表 整数
字典 浮点数
集合 布尔值
字节数组 字符串
数组 固定集合
字节
元组

当您修改一个变量时,可能看起来像是在更改对象的值,如这个交互式 Shell 示例所示:

>>> spam = 'hello'
>>> spam
'hello'
>>> spam = 'goodbye'
>>> spam
'goodbye'

但是在这段代码中,您没有将'hello'对象的值从'hello'更改为'goodbye'。它们是两个独立的对象。您只是将spam从引用'hello'对象切换到了'goodbye'对象。您可以通过使用id()函数显示两个对象的 id 来验证:

>>> spam = 'hello'
>>> id(spam)
40718944
>>> spam = 'goodbye'
>>> id(spam)
40719224

这两个字符串对象有不同的标识(40718944 和 40719224),因为它们是不同的对象。但是引用可变对象的变量可以原地修改其值。例如,在交互式 Shell 中输入以下内容:

>>> spam = ['cat', 'dog']
>>> id(spam)
33805576
>>> spam.append('moose') # 1
>>> spam[0] = 'snake' # 2
>>> spam
['snake', 'dog', 'moose']
>>> id(spam)
33805576

append()方法 1 通过索引的项目分配 2 都原地修改列表的值。即使列表的已经改变,它的标识保持不变(33805576)。但是当您使用+操作符连接一个列表时,您会创建一个新的对象(具有新的标识)来覆盖旧的列表:

>>> spam = spam + ['rat']
>>> spam
['snake', 'dog', 'moose', 'rat']
>>> id(spam)
33840064

列表连接创建一个具有新标识的新列表。当这种情况发生时,旧的列表最终会被垃圾收集器从内存中释放出来。您必须查阅 Python 文档来了解哪些方法和操作原地修改对象,哪些覆盖对象。要记住的一条好规则是,如果您在源代码中看到一个字面值,比如前面例子中的['rat'],Python 很可能会创建一个新对象。对对象调用的方法,比如append(),通常会原地修改对象。

对于不可变数据类型的对象,如整数、字符串或元组,赋值更简单。例如,在交互式 Shell 中输入以下内容:

>>> bacon = 'Goodbye'
>>> id(bacon)
33827584
>>> bacon = 'Hello' # 1
>>> id(bacon)
33863820
>>> bacon = bacon + ', world!' # 2
>>> bacon
'Hello, world!'
>>> id(bacon)
33870056
>>> bacon[0] = 'J' # 3
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

字符串是不可变的,所以你不能改变它们的值。虽然看起来字符串在bacon中的值从'Goodbye'变成了'Hello' 1 ,但实际上它被一个具有新 id 的新字符串对象覆盖了。类似地,使用字符串连接的表达式创建一个具有新标识的新字符串对象 2 。在 Python3 中,不允许使用项目赋值原地修改字符串。

元组的值被定义为它包含的对象以及这些对象的顺序。元组是不可变的序列对象,将值括在括号中。这意味着元组中的项目不能被覆盖:

>>> eggs = ('cat', 'dog', [2, 4, 6])
>>> id(eggs) 
39560896
>>> id(eggs[2]) 
40654152
>>> eggs[2] = eggs[2] + [8, 10]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

但是不可变元组中的可变列表元素仍然可以被原地修改:

>>> eggs[2].append(8)
>>> eggs[2].append(10)
>>> eggs
('cat', 'dog', [2, 4, 6, 8, 10])
>>> id(eggs) 
39560896
>>> id(eggs[2]) 
40654152

尽管这是一个模糊的特例,但记住这一点很重要。元组仍然引用相同的对象,如图图 7-3 所示。但是,如果一个元组包含一个可变对象,并且该对象改变了它的值,也就是说,如果该对象发生了变化,元组的值也会改变。

我,以及几乎每一个 Python 老鸟,都称元组是不可变的。但是有些元组能不能叫可变取决于你的定义。我在我的 PyCascades 2019 演讲中探讨了这个话题,在invpy.com/amazingtuple的“惊人的可变,不变元组”。你也可以阅读卢西亚诺·拉马尔霍在《流畅的 Python》第二章的解释。(奥莱利媒体公司,2015 年)

图 7-3:虽然一个元组中的对象集合是不可变的,但是对象可以是可变的。

索引、键和哈希

Python 列表和字典是可以包含多个其他值的值。要访问这些值,您需要使用一个索引操作符,它由一对方括号([ ])和一个称为索引的整数组成,以指定您想要访问的值。在交互式 Shell 中输入以下内容,查看索引如何处理列表:

>>> spam = ['cat', 'dog', 'moose']
>>> spam[0]
'cat'
>>> spam[-2]
'dog'

在本例中,0是一个索引。第一个索引是0,不是1,因为 Python(和大多数语言一样)使用的是从零开始的索引。使用从一开始的索引的语言很少:以 Lua 和 R 为代表 。Python 还支持负索引,其中-1指的是列表中的最后一项,-2指的是倒数第二项,依此类推。你可以认为负指数spam[–n]spam[len(spam) – n]一样。


计算机科学家兼创作歌手 Stan Kelly-Bootle 曾经开玩笑说,“数组索引应该从 0 还是 1 开始?反正我提出的应该从 0.5 开始被大家否定了,这种事情还是仁者见仁吧"


您还可以在列表字面值上使用 index 运算符,尽管所有这些方括号在实际代码中可能看起来令人困惑且没有必要:

>>> ['cat', 'dog', 'moose'][2]
'moose'

索引也可用于列表以外的值,例如在字符串上获取单个字符:

>>> 'Hello, world'[0]
'H'

Python 字典被组织成键值对:

>>> spam = {'name': 'Zophie'}
>>> spam['name']
'Zophie'

尽管列表索引仅限于整数,Python 字典的索引操作符是一个,可以是任何可哈希对象。一个哈希是一个整数,作为一个值的一种标记。对象的哈希值在对象的生命周期内不会改变,具有相同值的对象必须具有相同的哈希值。这个实例中的字符串'name'是值'Zophie'的键。如果对象是可哈希的,那么hash()函数将返回对象的哈希。不可变的对象,比如字符串、整数、浮点和元组,可以是可哈希的。列表(以及其他可变对象)是不可哈希的。在交互式 Shell 中输入以下内容:

>>> hash('hello')
-1734230105925061914
>>> hash(42)
42
>>> hash(3.14)
322818021289917443
>>> hash((1, 2, 3))
2528502973977326415
>>> hash([1, 2, 3])
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

虽然哈希的细节超出了本书的范围,但是键的哈希被用来查找存储在字典中的条目和设置数据结构。这就是为什么不能使用可变列表作为字典的键:

>>> d = {}
>>> d[[1, 2, 3]] = 'some value'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

哈希不同于标识。具有相同值的两个不同对象将具有不同的标识,但具有相同的哈希。例如,在交互式 Shell 中输入以下内容:

>>> a = ('cat', 'dog', 'moose')
>>> b = ('cat', 'dog', 'moose')
>>> id(a), id(b)
(37111992, 37112136)
>>> id(a) == id(b) # 1
False
>>> hash(a), hash(b)
(-3478972040190420094, -3478972040190420094)
>>> hash(a) == hash(b) # 2
True

ab引用的元组具有不同的 id 1 ,但是它们相同的值意味着它们将具有相同的哈希值 2 。注意,如果一个元组只包含可哈希的项,那么它就是可哈希的。因为在字典中只能使用可哈希项作为键,所以不能使用包含不可哈希列表的元组作为键。在交互式 Shell 中输入以下内容:

>>> tuple1 = ('cat', 'dog')
>>> tuple2 = ('cat', ['apple', 'orange']) 
>>> spam = {}
>>> spam[tuple1] = 'a value' # 1
>>> spam[tuple2] = 'another value' # 2
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

注意tuple1是可哈希的 1 ,但是tuple2包含一个不可哈希的列表 2 ,因此也是不可哈希的。

容器、序列、映射和集合类型

单词容器、序列、和映射在 Python 中的含义不一定适用于其他编程语言。在 Python 中,容器是可以包含多个其他对象的任何数据类型的对象。列表和字典是 Python 中常用的容器类型。

序列是任何容器数据类型的对象,其有序值可通过整数索引访问。字符串、元组、列表和字节对象是序列数据类型。这些类型的对象可以使用索引操作符中的整数索引来访问值(括号[]),也可以传递给len()函数。“有序”是指序列中有第一个值、第二个值等等。例如,以下两个列表值被认为不相等,因为它们的值排序不同:

>>> [1, 2, 3] == [3, 2, 1]
False

映射是任何容器数据类型的对象,它使用键而不是索引。映射可以是有序的,也可以是无序的。Python 3.4 和更早版本中的字典是无序的,因为字典中没有第一个或最后一个键值对:

>>> spam = {'a': 1, 'b': 2, 'c': 3, 'd': 4}  # This is run from CPython 3.5.
>>> list(spam.keys())
['a', 'c', 'd', 'b']
>>> spam['e'] = 5
>>> list(spam.keys())
['e', 'a', 'c', 'd', 'b']

在 Python 的早期版本中,不能保证从字典中以一致的顺序获得条目。由于字典的无序性质,对于它们的键-值对,以不同顺序编写的两个字典字面值仍然被认为是相等的:

>>> {'a': 1, 'b': 2, 'c': 3} == {'c': 3, 'a': 1, 'b': 2}
True

但是从 CPython 3.6 开始,字典保留了它们的键值对的插入顺序:

>>> spam = {'a': 1, 'b': 2, 'c': 3, 'd': 4}  # This is run from CPython 3.6.
>>> list(spam)
['a', 'b', 'c', 'd']
>>> spam['e'] = 5
>>> list(spam)
['a', 'b', 'c', 'd', 'e']

这是 CPython 3.6 解释器中的一个特性,但在 Python 3.6 的其他解释器中没有。所有 Python 3.7 解释器都支持有序字典,这在 Python 语言 3.7 中成为标准。但是,仅仅因为一个字典是有序的,并不意味着它的条目可以通过整数索引来访问:spam[0]不会计算有序字典中的第一个条目(除非碰巧第一个条目有一个键0)。如果有序字典包含相同的键值对,则它们也被认为是相同的,即使键值对在每个字典中的顺序不同。

collections模块包含许多其他映射类型,包括OrderedDictChainMapCounterUserDict,这些在docs.python.org/3/library/collections.html的在线文档中有描述。

双下划线方法和魔术方法

双下划线方法,也称为魔术方法,是 Python 中的特殊方法,其名称以两个下划线开始和结束。这些方法用于运算符重载。Dunder 是双下划线的简称。最熟悉的魔术方法是__init__()(读作“双下划线 init 双下划线”,或简称为“init”),它初始化对象。Python 有几十个魔术方法,第 17 章详细解释了它们。

模块和包

一个模块是一个 Python 程序,其他 Python 程序可以导入它,这样它们就可以使用该模块的代码。Python 自带的模块统称为 Python 标准库,但是你也可以创建自己的模块。例如,如果将 Python 程序保存为spam.py,其他程序可以运行import spam来访问spam.py程序的函数、类和全局变量。

一个是你通过放置一个名为__init__.py的文件形成的模块集合在一个文件夹里面。您使用文件夹的名称作为包的名称。包可以包含多个模块(即.py文件)或其他包(其他文件夹包含__init__.py文件)。

有关模块和包的更多解释和细节,请查看位于docs.python.org/3/tutorial/modules.html的官方 Python 文档。

可调用对象和一级对象

函数和方法不是 Python 中唯一可以调用的东西。任何实现了可调用操作符——两个括号()的对象都是可调用对象。例如,如果你有一个def hello():语句,你可以把代码想象成一个名为hello的变量,它包含一个函数对象。在这个变量上使用 callable 操作符调用变量中的函数:hello()

类是一个面向对象的概念,类是一个可调用对象的例子,它不是函数或方法。例如,datetime模块中的date类是使用可调用操作符调用的,如代码datetime.date(2020, 1, 1)所示。当类对象被调用时,运行该类的__init__()方法中的代码。第 15 章有更多关于职业的细节。

在 Python 中,函数是一级对象,这意味着您可以将它们存储在变量中,在函数调用中将它们作为参数传递,从函数调用中返回它们,以及对对象执行任何其他操作。把一个def语句想象成把一个函数对象赋给一个变量。例如,您可以创建一个spam()函数,然后您可以调用它:

>>> def spam():
...    print('Spam! Spam! Spam!')
...
>>> spam()
Spam! Spam! Spam!

也可以将spam()函数对象赋给其他变量。当您调用已经为其分配了函数对象的变量时,Python 会执行该函数:

>>> eggs = spam
>>> eggs()
Spam! Spam! Spam!

这些被称为别名,是现有函数的另一个名称。如果您需要重命名一个函数,通常会用到它们。但是如果大量的现有代码使用旧的名称,要改变它会很麻烦。

一级函数最常见的用途是将函数传递给其他函数。例如,我们可以定义一个callTwice()函数,可以向它传递一个需要调用两次的函数:

>>> def callTwice(func):
...     func()
...     func()
...
>>> callTwice(spam)
Spam! Spam! Spam!
Spam! Spam! Spam!

虽然你可以在你的源代码中写两次spam()。但是您可以在运行时将callTwice()函数传递给任何函数,而不必事先在源代码中输入两次函数调用。

常见混淆术语

技术行话已经够令人困惑的了,尤其是那些有着相关但不同定义的术语。更糟糕的是,语言、操作系统和计算领域可能使用不同的术语来表示相同的事物,或者使用相同的术语来表示不同的事物。为了与其他程序员清楚地交流,您需要了解以下术语之间的区别。

语句与表达式

表达式是由运算符和值组成的指令,计算结果为单个值。值可以是变量(包含值)或函数运行结果(返回值)。因此,2 + 2是一个计算结果为单个值4的表达式。而且len(myName) > 4myName.isupper() or myName == 'Zophie'也是表达方式。值本身也是一个对自身求值的表达式。

语句实际上是 Python 中的所有其他指令。这些语句包括if语句、for语句、def语句、return语句等等。语句不会计算出一个值。有些语句可以包含表达式,比如像spam = 2 + 2这样的赋值语句或者像if myName == 'Zophie':这样的if语句。

虽然 Python3 使用了一个print()函数,但是 Python2 使用了一个print语句。区别可能看起来只是引入了括号,但重要的是要注意 Python3 print()函数有一个返回值(总是为None),可以作为参数传递给其他函数,也可以赋给一个变量。这些操作都不能用语句实现。但是,您仍然可以在 Python2 中使用括号,如下面的交互式 Shell 示例所示:

>>> print 'Hello, world!' # run in Python2
Hello, world!
>>> print('Hello, world!') # run in Python2 # 1
Hello, world!

虽然这看起来像一个函数调用 1 ,但它实际上是一个带括号的字符串值的print语句,同样的方式分配spam = (2 + 2)相当于spam = 2 + 2。在 Python2 和 3 中,可以分别向print语句或print()函数传递多个值。在 Python3 中,这将如下所示:

>>> print('Hello', 'world') # run in Python3
Hello world

但是在 Python2 中使用相同的代码会被解释为在一个print语句中传递一个由两个字符串值组成的元组,产生以下输出:

>>> print('Hello', 'world') # run in Python2
('Hello', 'world')

一个语句和一个由函数调用组成的表达式有细微而且明确的区别。

块、子句和正文

术语块、子句、正文经常互换使用,指代一组 Python 指令。一个从缩进开始,当缩进与前一个缩进对齐时结束。例如,跟随在iffor语句之后的代码被称为语句块。以冒号结尾的语句后面需要一个新的块,如ifelseforwhiledefclass等等。

但是 Python 确实允许单行代码块。尽管不推荐,但这是有效的 Python 语法:

if name == 'Zophie': print('Hello, kitty!')

通过使用分号,您还可以在if语句块中拥有多条指令:

if name == 'Zophie': print('Hello, kitty!'); print('Do you want a treat?')

但是你不能将其他需要新块的语句放在同一行程序。以下是无效的 Python 代码:

if name == 'Zophie': if age < 2: print('Hello, kitten!')

这是错误代码的,因为如果一个else语句在下一行,那么else语句将引用哪个if语句将是不明确的。

官方 Python 文档更喜欢使用术语子句而不是块(docs.python.org/3/reference/compound_stmts.html)。以下代码是一个子句:

if name == 'Zophie':
    print('Hello, kitty!')
    print('Do you want a treat?')

if语句是子句头,嵌套在if中的两个print()调用是子句集正文。Python 官方文档使用来指代作为一个单元执行的一段 Python 代码,比如模块、函数或类定义(docs.python.org/3/reference/executionmodel.html)。

变量与属性

变量仅仅是引用对象的名字。属性用官方文档的话来说就是“句号后的任何名称”(docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces)。属性与对象(点/句号前的名称)相关联。例如,在交互式 Shell 中输入以下内容:

>>> import datetime
>>> spam = datetime.datetime.now()
>>> spam.year
2018
>>> spam.month
1

在这个代码示例中,spam是包含一个datetime对象(从datetime.datetime.now()返回)的变量,yearmonth是该对象的属性。即使在sys.exit()的情况下,exit()函数也被认为是sys模块对象的属性。

其他语言称属性字段属性,或者成员变量

函数与方法

函数是被调用时运行的代码集合。一个方法是一个与类相关联的函数(或者一个可调用对象,在下一节中描述),就像属性是一个与对象相关联的变量一样。函数包括内置函数或与模块相关联的函数。例如,在交互式 Shell 中输入以下内容:

>>> len('Hello')
5
>>> 'Hello'.upper()
'HELLO'
>>> import math
>>> math.sqrt(25)
5.0

在这个例子中,len()是一个函数,upper()是一个字符串方法。方法也被认为是与它们相关的对象的属性。注意,句号并不一定意味着你在处理一个方法而不是一个函数。sqrt()函数与math相关联,这是一个模块,而不是一个类。

可迭代对象与迭代器

Python 的for循环是通用的。语句for i in range(3):将运行一个代码块三次。range(3)的调用不仅仅是 Python 告诉for循环的方式,“重复一些代码三次”调用range(3)返回一个范围对象,就像调用list('cat')返回一个列表对象一样。这两个对象都是可迭代对象(或者简称为可迭代值)的例子。

for循环中使用可迭代对象。在交互式 Shell 中输入以下内容,可以看到一个for循环遍历一个范围对象和一个列表对象:

>>> for i in range(3):
...  print(i) # body of the for loop
...
0
1
2
>>> for i in ['c', 'a', 't']:
...  print(i) # body of the for loop
...
c
a
t

可迭代对象还包括所有序列类型,如范围、列表、元组和字符串对象,以及一些容器对象,如字典、集合和文件对象。

然而,在这些for循环示例中,仔细探讨一下,背后还有很多有意思的事情。在幕后,Python 正在为for循环调用内置的iter()next()函数。当在for循环中使用时,可迭代对象被传递给内置的iter()函数,该函数返回迭代器对象。尽管 可迭代对象包含这些项,迭代器对象仍然跟踪循环中下一个要使用的项。在循环的每次迭代中,迭代器对象被传递给内置的next()函数,以返回可迭代对象中的下一项。我们可以手动调用iter()next()函数,直接查看for循环是如何工作的。在交互式 Shell 中输入以下内容,执行与上一个循环示例相同的指令:

>>> iterableObj = range(3)
>>> iterableObj
range(0, 3)
>>> iteratorObj = iter(iterableObj)
>>> i = next(iteratorObj)
>>> print(i) # body of the for loop
0
>>> i = next(iteratorObj)
>>> print(i) # body of the for loop
1
>>> i = next(iteratorObj)
>>> print(i) # body of the for loop
2
>>> i = next(iteratorObj)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration # 1

注意,如果在可迭代对象中的最后一项返回后调用next(),Python 会引发一个StopIteration异常 1 。Python 的for循环捕捉到这个异常,知道何时应该停止循环,而不是用这个错误消息让程序崩溃。

迭代器只能对可迭代对象中的项迭代一次。这类似于您只能使用open()readlines()来读取文件内容一次,然后必须重新打开文件来再次读取其内容。如果想再次迭代可迭代对象,必须再次调用iter()来创建另一个 迭代器对象。您可以创建任意数量的迭代器对象;每个都将独立地跟踪它,保证返回的下一个元素。在交互式 Shell 中输入以下内容,查看其工作原理:

>>> iterableObj = list('cat')
>>> iterableObj
['c', 'a', 't']
>>> iteratorObj1 = iter(iterableObj)
>>> iteratorObj2 = iter(iterableObj)
>>> next(iteratorObj1)
'c'
>>> next(iteratorObj1)
'a'
>>> next(iteratorObj2)
'c'

记住,可迭代对象作为参数传递给iter()函数,而从iter()调用返回的对象是迭代器对象。迭代器对象被传递给next()函数。当您使用class语句创建自己的数据类型时,您可以实现__iter__()__next__()内置方法,以便在for循环中使用您的对象。

语法错误、编译错误和语义错误

有很多方法可以对 bug 进行分类。但是在高层次上,您可以将编程错误分为三种类型:语法错误、编译错误和语义错误。

语法是给定编程语言中有效指令的规则集。一个语法错误,比如丢失了括号,用句号代替了逗号,或者其他一些打字错误都会立即生成一个SyntaxError。语法错误也被称为解析错误,当 Python 解释器无法将源代码的文本解析成有效指令时,就会出现这种错误。在英语中,这个错误相当于不正确的语法或一串无意义的单词,如by uncontaminated cheese certainly it’s。计算机需要特定的指令,无法读取程序员的思想来确定程序应该做什么,因此一个语法错误的程序甚至不会运行。

一个编译错误是当一个正在运行的程序无法执行某些任务时,比如试图打开一个不存在的文件或者将一个数除以零。在英语中,编译错误相当于给出一个无法运行的指令,比如“画一个有三条边的正方形”如果编译错误没有得到解决,程序将崩溃并显示回溯。但是您可以使用运行错误处理代码的try-except语句来捕获编译错误。例如,在交互式 Shell 中输入以下内容:

>>> slices = 8
>>> eaters = 0
>>> print('Each person eats', slices / eaters, 'slices.')

当您运行该代码时,它将显示以下回溯信息:

Traceback (most recent call last):
  File "<pyshell#4>", line 1, in <module>
    print('Each person eats', slices / eaters, 'slices.')
ZeroDivisionError: division by zero

记住回溯提到的行号只是 Python 解释器检测到错误的地方,这很有帮助。错误的真正原因可能是在前一行代码中,甚至是在程序的更靠前部分。

源代码中的语法错误在程序运行前被解释器捕获,但是语法错误也可能在运行时发生。eval()函数可以获取一串 Python 代码并运行它,这可能会在运行时产生一个SyntaxError。例如,eval('print("Hello, world)')缺少一个右双引号,在代码调用eval()之前程序不会解析到。

一个语义错误(也称为逻辑错误)是一个更微妙的错误。语义错误不会导致错误信息或崩溃,但计算机会以程序员不希望的方式执行指令。在英语中,语义错误的等价形式是告诉计算机,“从商店买一盒牛奶,如果他们有鸡蛋,就买一打。”因为商店有鸡蛋,所以计算机会买 13 盒牛奶。不管是好是坏,计算机完全按照你的要求去做。例如,在交互式 Shell 中输入以下内容:

>>> print('The sum of 4 and 2 is', '4' + '2')

您将获得以下输出:

The sum of 4 and 2 is 42

显然,42 不是我们预期的结果。但是请注意,程序没有崩溃。因为 Python 的+操作符可以将整数值相加,也可以将字符串值连接起来,所以错误地使用字符串值'4''2'代替整数导致了非预期的行为。

形参与实参

形参def语句中括号之间的变量名。实参是在函数调用中传递的值,然后这些值被分配给参数。例如,在交互式 Shell 中输入以下内容:

>>> def greeting(name, species): # 1
...    print(name + ' is a ' + species)
...
>>> greeting('Zophie', 'cat') # 2
Zophie is a cat

def语句中,namespecies是参数 1 。在函数调用中,'Zophie''cat'是实参 2 。这两个术语经常被混淆。请记住,当参数和实参在此上下文中使用时,它们分别只是变量和值的其他名称。

显式转换与隐式转换

您可以将一种类型的对象转换为另一种类型的对象。例如,int('42')将字符串'42'转换为整数42。实际上,字符串对象'42'并没有被转换,因为int()函数基于原始对象创建了一个新的整数对象。当转换像这样显式完成时,我们就转换了对象,尽管程序员仍然经常称这个过程为转换对象。

Python 通常会隐式地进行类型转换,比如在计算表达式2 + 3.05.0时。像23.0这样的值被强制转换成操作符可以处理的通用数据类型。这种转换是通过隐式完成的,被称为类型强制转换

强制有时会导致令人惊讶的结果。Python 中的布尔值TrueFalse可以分别强制为整数值10。尽管在真实世界的代码中,你永远不会将布尔值写成这些值,但这意味着表达式True + False + True相当于1 + 0 + 1,并且计算结果为2。了解了这些之后,您可能会认为将一个布尔值列表传递给sum()是计算列表中True值数量的好方法。但事实证明调用count() list 方法更快。

属性与特性

在许多语言中,术语属性特性被用作同义词,但是在 Python 中这些词有不同的含义。第 124 页“变量与属性”中解释的属性是与对象相关的名称。属性包括对象的成员变量和方法。

其他语言,比如 Java,有针对类的获取器和设置器方法。程序必须调用属性的设置器方法,而不是直接给属性赋值(可能是无效的)。设置器方法中的代码可以确保成员变量只被赋予一个有效值。获取器方法读取属性的值。如果一个属性被命名为accountBalance,那么设置器和获取器方法通常分别被命名为setAccountBalance()getAccountBalance()

在 Python 中,属性允许程序员使用加简洁的语法实现获取器和设置器函数。第 17 章更详细地探讨了 Python 的属性。

字节码与机器码

源代码被编译后,称为机器码的指令形式,由 CPU 直接执行。机器代码由来自 CPU 的指令集的指令组成,这是计算机的内置命令集。由机器码组成的编译程序被称为二进制文件。一种古老的语言,如 C,有编译器软件,可以将 C 源代码编译成二进制文件,用于几乎所有可用的 CPU。但是,如果像 Python 这样的语言想要在同一套 CPU 上运行,就必须为每个 CPU 编写大量的 Python 编译器。

还有另一种方法可以将源代码转换成机器可用的代码。你可以创建字节码,而不是创建由 CPU 硬件直接执行的机器码。也被称为可移植代码P 代码(译者注:机器码也称为 N 代码),字节码由软件解释程序执行,而不是直接由 CPU 执行。Python 字节码由指令集的指令组成,尽管现实世界中没有硬件 CPU 执行这些指令。相反,软件解释器执行字节码。Python 字节码存储在.pyc文件中,.py是它的源文件。用 C 编写的 CPython 解释器可以将 Python 源代码编译成 Python 字节码,然后执行指令。(Java 虚拟机软件 JVM 也是如此,它执行 Java 字节码。)因为是用 C 写的,CPython 有一个 Python 解释器,可以为任何 C 已经有编译器的 CPU 编译。

斯科特·桑德森(Scott Sanderson)和乔·杰夫尼克(Joe Jevnik)在 PyCon 2016 上发表的演讲“玩转 Python 字节码”是了解这个主题的绝佳资源(youtu.be/mxjv9KqzwjI)。

脚本与程序,脚本语言与编程语言

脚本和程序之间的区别,以及脚本语言和编程语言之间的区别,都是模棱两可的。简单地说,所有的脚本都是程序,所有的脚本语言都是编程语言。但是脚本语言有时被认为是更简单或“不真实”的编程语言。

区分脚本和程序的一种方法是根据代码的执行方式。用脚本语言编写的脚本直接从源代码中解释,而用编译语言编写的程序被编译成二进制。但是 Python 通常被认为是一种脚本语言,尽管在 Python 程序运行时有一个编译字节码的步骤。同时,Java 通常不被认为是脚本语言,尽管它产生字节码而不是机器代码二进制,就像 Python 一样。从技术上讲,语言没有被编译或解释;更确切地说,一种语言有编译器或解释器的实现,为任何语言创建编译器或解释器都是可能的。

这些差异可以争论,但不必较真。脚本语言不一定功能更弱,编译编程语言也不一定更难使用。

库/框架/SDK/引擎/API

使用其他人的代码可以节省大量时间。您经常可以找到打包成库、框架、SDK、引擎或 API 的代码。这些实体之间的差异是微妙但重要的。

一个是一个由第三方制作的代码集合的通称。库可以包含供开发人员使用的函数、类或其他代码。Python 库可能采用包、一组包甚至单个模块的形式。库通常是用特定语言编写的。开发者不需要知道库代码是如何工作的;他们只需要知道如何调用库中的代码或与库中的代码交互。一个标准库,比如 Python 标准库,是假定可用于编程语言的所有实现的代码库。

一个框架是用控制反转操作的代码集合;开发人员创建框架将根据需要调用的函数,而不是开发人员的代码调用框架中的函数。控制反转通常被描述为“不要打电话给我们,我们会打电话给你。”例如,为 Web 应用框架编写代码涉及到为 web 页面创建函数,当 web 请求进来时,框架将调用这些函数。

一个软件开发工具包SDK)包括代码库、文档和软件工具,以帮助为特定的操作系统或平台创建应用。例如,Android SDK 和 iOS SDK 分别用于创建 Android 和 iOS 的移动应用。Java 开发工具包(JDK)是一个为 JVM 创建应用的 SDK。

一个引擎是一个大型的独立系统,可以由开发者的软件进行外部控制。开发人员通常调用引擎中的函数来执行大型复杂的任务。引擎的例子包括游戏引擎、物理引擎、推荐引擎、数据库引擎、象棋引擎和搜索引擎。

一个应用编程接口API)是库、SDK、框架或引擎的面向公众的接口。API 指定如何调用函数或向库发出访问资源的请求。库的创建者会提供 API 的文档。许多流行的社交网络和网站为程序提供 HTTP API 来访问它们的服务,而不是由人使用 web 浏览器。使用这些 API,你可以编写程序,例如,可以自动在脸书上发布消息或阅读 Twitter 时间表。

总结

尽快侵淫编程多年,有可能仍不熟悉某些编程术语。但是大多数主要的软件应用都是由软件开发团队创建的,而不是个人。因此,当你和团队一起工作时,能够清晰地交流是非常重要的。

本章解释了 Python 程序由标识符、变量、字面值、关键字和对象组成,所有 Python 对象都有值、数据类型和标识。虽然每个对象都有一个数据类型,但也有几个大的类型类别,如容器、序列、映射、集合、内置和用户自定义类型。

某些术语(如值、变量和函数)在特定上下文中(如元素、参数、参数和方法)具有不同的名称。有几个术语也很容易相互混淆。在日常编程中混淆这些术语并不是什么大不了的事情:例如,属性与特性,块与正文,异常与错误,或者库,框架,SDK,引擎和 API 之间的细微差异。例如,语句和表达式,函数和方法以及参数和参数通常被初学者互换使用。

但是其他术语,比如可迭代对象与迭代器、语法错误与语义错误、字节码与机器码,都有不同的含义,除非你想搞晕你的同事,否则千万不要混淆这些基本概念。

您仍然会发现术语的使用因语言而异,甚至因程序员而异。随着时间的推移,你会随着经验(和频繁的网络搜索)变得更加熟悉行话。

扩展阅读

docs.python.org/3/glossary.html的官方 Python 词汇表列出了 Python 生态系统使用的简短但有用的定义。

docs.python.org/3/reference/datamodel.html的官方 Python 文档更详细地描述了 Python 对象。

妮娜·扎哈伦科在 PyCon 2016 演讲“Python 中的内存管理——基础知识”,youtu.be/F6u5rhUQ6dU,解释了 Python 的垃圾收集器如何工作的许多细节。

docs.python.org/3/library/gc.html的官方 Python 文档有更多关于垃圾收集器的信息。

Python 邮件列表中关于在 Python 3.6 中制作字典的讨论也很好阅读,详情可查看mail.python.org/pipermail/python-dev/2016-September/146327.html

相关文章
|
28天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
27天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
16天前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
102 80
|
2月前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
149 59
|
5天前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
27 14
|
14天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
49 2
|
28天前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
46 10
|
1月前
|
机器学习/深度学习 人工智能 Java
Python 语言:强大、灵活与高效的编程之选
本文全面介绍了 Python 编程语言,涵盖其历史、特点、应用领域及核心概念。从 1989 年由 Guido van Rossum 创立至今,Python 凭借简洁的语法和强大的功能,成为数据科学、AI、Web 开发等领域的首选语言。文章还详细探讨了 Python 的语法基础、数据结构、面向对象编程等内容,旨在帮助读者深入了解并有效利用 Python 进行编程。
|
30天前
|
机器学习/深度学习 人工智能 数据挖掘
探索Python编程的奥秘
在数字世界的海洋中,Python如同一艘灵活的帆船,引领着无数探险者穿梭于数据的波涛之中。本文将带你领略Python编程的魅力,从基础语法到实际应用,一步步揭开Python的神秘面纱。
44 12
|
29天前
|
IDE 程序员 开发工具
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!